Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
An Acad Bras Cienc ; 88 Suppl 1: 665-75, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27142547

RESUMO

Scorpions belonging to the Tityus genus are of medical interest in Brazil. Among them, Tityus stigmurus is the main scorpion responsible for stings in the Northeast region. After a sting, the scorpion venom distributes rapidly to the organs, reaching the kidneys quickly. However, there are few studies concerning the renal pathophysiology of scorpion poisoning. In this study, we evaluated the effects of T. stigmurus venom (TsV) on renal parameters in isolated rat kidneys. Wistar rats (n = 6), weighing 250-300 g, were perfused with Krebs-Henseleit solution containing 6 g/100 mL bovine serum albumin. TsV at 0.3 and 1.0 µg/mL was tested, and the effects on perfusion pressure (PP), renal vascular resistance (RVR), urinary flow (UF), glomerular filtration rate (GFR), and electrolyte excretion were analyzed. Effects were observed only at TsV concentration of 1.0 µg/mL, which increased PP (controlPP40' = 92.7 ± 1.95; TsVPP40' = 182.0 ± 4.70* mmHg, *p < 0.05), RVR (controlRVR40' = 3.28 ± 0.23 mmHg; TstRVR40' = 6.76 ± 0.45* mmHg, *p < 0.05), UF (controlUF50' = 0.16 ± 0.04; TstUF50' = 0.60 ± 0.10* mL/g/min,*p < 0.05), GFR and electrolyte excretion, with histological changes that indicate renal tubular injury. In conclusion, T. stigmurus venom induces a transient increase in PP with tubular injury, both of which lead to an augmented electrolyte excretion.


Assuntos
Rim/efeitos dos fármacos , Venenos de Escorpião/farmacologia , Escorpiões , Animais , Brasil , Taxa de Filtração Glomerular/efeitos dos fármacos , Ratos , Ratos Wistar , Escorpiões/classificação
2.
PLoS One ; 10(7): e0132569, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26193352

RESUMO

Acute renal failure is a common complication caused by Bothrops viper envenomation. In this study, the nefrotoxicity of a main component of B. leucurus venom called L-aminoacid oxidase (LAAO-Bl) was evaluated by using tubular epithelial cell lines MDCK and HK-2 and perfused kidney from rats. LAAO-Bl exhibited cytotoxicity, inducing apoptosis and necrosis in MDCK and HK-2 cell lines in a concentration-dependent manner. MDCK apoptosis induction was accompanied by Ca2+ release from the endoplasmic reticulum, reactive oxygen species (ROS) generation and mitochondrial dysfunction with enhanced expression of Bax protein levels. LAAO-Bl induced caspase-3 and caspase-7 activation in both cell lines. LAAO-Bl (10 µg/mL) exerts significant effects on the isolated kidney perfusion increasing perfusion pressure and urinary flow and decreasing the glomerular filtration rate and sodium, potassium and chloride tubular transport. Taken together our results suggest that LAAO-Bl is responsible for the nephrotoxicity observed in the envenomation by snakebites. Moreover, the cytotoxic of LAAO-Bl to renal epithelial cells might be responsible, at least in part, for the nephrotoxicity observed in isolated kidney.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Apoptose/efeitos dos fármacos , Bothrops , Venenos de Crotalídeos/farmacologia , Rim/efeitos dos fármacos , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular , Rim/metabolismo , Rim/patologia , Necrose/metabolismo , Necrose/patologia , Ratos , Espécies Reativas de Oxigênio/metabolismo
3.
J Proteomics ; 114: 93-114, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25462430

RESUMO

The Caatinga lancehead, Bothrops erythromelas, is a medically relevant species, responsible for most of the snakebite accidents in most parts of its distribution range in northeastern Brazil. The spectrum and geographic variability of its venom toxins were investigated applying a venomics approach to venom pools from five geographic areas within the Caatinga ecoregion. Despite its wide habitat, populations of B. erythromelas from Ceará, Pernambuco, Juazeiro, Paraiba, and Ilha de Itaparica exhibit highly conserved venom proteomes. Mirroring their compositional conservation, the five geographic venom pools also showed qualitatively and quantitatively overlapping antivenomic profiles against antivenoms generated in Vital Brazil (BR) and Clodomiro Picado (CR) Institutes, using different venoms in the immunization mixtures. The paraspecificity exhibited by the Brazilian SAB and the Costa Rican BCL antivenoms against venom toxins from B. erythromelas indicates large immunoreactive epitope conservation across genus Bothrops during the last ~14 million years, thus offering promise for the possibility of generating a broad-spectrum bothropic antivenom. Biological Significance Accidental snakebite envenomings represent an important public health hazard in Brazil. Ninety per cent of the yearly estimated 20-30,000 snakebite accidents are caused by species of the Bothrops genus. Bothrops erythromelas, a small, moderately stocky terrestrial venomous snake, is responsible for most of the snakebite accidents in its broad distribution range in the Caatinga, a large ecoregion in northeastern Brazil. To gain a deeper insight into the spectrum of medically important toxins present in the venom of the Caatinga lancehead, we applied a venomics approach to define the proteome and geographic variability of adult B. erythromelas venoms from five geographic regions. Although intraspecific compositional variation between venoms among specimens from different geographic regions has long been appreciated by herpetologists and toxinologists as a general feature of highly adaptable and widely distributed snake species, the five B. erythromelas populations investigated exhibit highly conserved venom proteomes. The overall toxin profile of the Caatinga lancehead's venom explains the local and systemic effects observed in envenomations by B. erythromelas. The five geographic venom pools sampled also showed qualitatively and quantitatively overlapping antivenomic profiles against antivenoms generated using different bothropic venoms in the immunization mixtures. The large immunoreactive epitope conservation across genus Bothrops offers promise for the generation of a broad-spectrum bothropic antivenom.


Assuntos
Antivenenos/metabolismo , Bothrops/metabolismo , Venenos de Crotalídeos/metabolismo , Proteômica/métodos , Sequência de Aminoácidos , Animais , Antivenenos/análise , Bothrops/classificação , Brasil , Cromatografia Líquida de Alta Pressão , Venenos de Crotalídeos/análise , Venenos de Crotalídeos/imunologia , Ecossistema , Eletroforese em Gel Bidimensional , Fragmentos de Peptídeos/análise , Proteoma/análise , Especificidade da Espécie
4.
Toxicon ; 88: 107-14, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24874890

RESUMO

Bothropoides insularis (jararaca-ilhoa) is a native endemic snake limited to the specific region of Queimada Island, on São Paulo coast. Several local and systemic effects have been described due to envenomation caused by it, such as edema, tissue necrosis, hemorrhage and acute renal failure. Our previous studies have shown that Bothropoides insularis venom (BinsV) demonstrated important functional and morphologic alterations in rat isolated kidney, especially decrease in tubular electrolyte transport, osmotic clearance and tubular necrosis. In order to elucidate the direct nephrotoxicity mechanism, the aim of the present study was to investigate BinsV cytotoxicity effect on renal epithelial cells. The treatment with BinsV over MDCK culture decreased cell viability in all concentrations tested with IC50 of 9 µg/mL. BinsV was able to induce membrane rupture and cell death with phosphatidilserine externalization. Furthermore, BinsV induced ROS overproduction and mitochondrial membrane potential collapse, as well as Bax translocation and caspases 3 and 7 expression. Therefore, these events might be responsible by BinsV-induced cell death caused by mitochondrial dysfunction and ROS overproduction in the direct cytotoxicity process.


Assuntos
Bothrops , Venenos de Crotalídeos/toxicidade , Túbulos Renais/efeitos dos fármacos , Animais , Caspases/metabolismo , Cães , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Túbulos Renais/patologia , Células Madin Darby de Rim Canino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Necrose , Espécies Reativas de Oxigênio/metabolismo
5.
Antimicrob Agents Chemother ; 58(4): 1872-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24395230

RESUMO

Nephrotoxicity is the main complication of gentamicin (GM) treatment. GM induces renal damage by overproduction of reactive oxygen species and inflammation in proximal tubular cells. Phenolic compounds from ginger, called gingerols, have been demonstrated to have antioxidant and anti-inflammatory effects. We investigated if oral treatment with an enriched solution of gingerols (GF) would promote a nephroprotective effect in an animal nephropathy model. The following six groups of male Wistar rats were studied: (i) control group (CT group); (ii) gingerol solution control group (GF group); (iii) gentamicin treatment group (GM group), receiving 100 mg/kg of body weight intraperitoneally (i.p.); and (iv to vi) gentamicin groups also receiving GF, at doses of 6.25, 12.5, and 25 mg/kg, respectively (GM+GF groups). Animals from the GM group had a significant decrease in creatinine clearance and higher levels of urinary protein excretion. This was associated with markers of oxidative stress and nitric oxide production. Also, there were increases of the mRNA levels for proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-1ß [IL-1ß], IL-2, and gamma interferon [IFN-γ]). Histopathological findings of tubular degeneration and inflammatory cell infiltration reinforced GM-induced nephrotoxicity. All these alterations were attenuated by previous oral treatment with GF. Animals from the GM+GF groups showed amelioration in renal function parameters and reduced lipid peroxidation and nitrosative stress, in addition to an increment in the levels of glutathione (GSH) and superoxide dismutase (SOD) activity. Gingerols also promoted significant reductions in mRNA transcription for TNF-α, IL-2, and IFN-γ. These effects were dose dependent. These results demonstrate that GF promotes a nephroprotective effect on GM-mediated nephropathy by oxidative stress, inflammatory processes, and renal dysfunction.


Assuntos
Catecóis/farmacologia , Álcoois Graxos/farmacologia , Gentamicinas/toxicidade , Rim/efeitos dos fármacos , Rim/metabolismo , Zingiber officinale/química , Animais , Antioxidantes/metabolismo , Glutationa/metabolismo , Interleucina-1beta/metabolismo , Interleucina-2/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/genética , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
6.
Phytochemistry ; 96: 457-64, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24075572

RESUMO

From the leaves of Solanum campaniforme (Solanaceae), eight solanidane alkaloids were isolated, four of which contain a p-hydroxyphenylethylamine unit. Their structures were established as: 22ß,23ß-epoxy-solanida-1,4-dien-3-one; 22α,23α-epoxy-10-epi-solanida-1,4,9-trien-3-one; 22α,23α-epoxy-solanida-4-en-3-one; 22ß,23ß-epoxy-solanida-4-en-3-one; (E)-N-[8'(4-hydroxyphenyl)ethyl]-22α,23α-epoxy-solanida-1,4,9-trien-3-imine; (E)-N-[8'(4-hydroxyphenyl)ethyl]-22α,23α-epoxy-solanida-1,4-dien-3-imine; (Z)-N-[8'(4-hydroxyphenyl)ethyl]-22α,23α-epoxy-solanida-1,4,9-trien-3-imine and (Z)-N-[8'(4-hydroxyphenyl)ethyl]-22α,23α-epoxy-solanida-1,4-dien-3-imine. All structures were determined using spectroscopic techniques, such as 1D and 2D NMR, and HRESIMS. The cytotoxicity and the antiophidic activities of the alkaloids were evaluated. The alkaloids did not show any cytotoxicity, but inhibited the main toxic actions of Bothrops pauloensis venom.


Assuntos
Alcaloides/isolamento & purificação , Solanum/química , Alcaloides/química , Alcaloides/farmacologia , Brasil , Venenos de Crotalídeos/antagonistas & inibidores , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Folhas de Planta/química , Estereoisomerismo
7.
Toxicon ; 74: 19-26, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23911732

RESUMO

Mammalian natriuretic peptides (NPs) have been extensively investigated for use as therapeutic agents in the treatment of cardiovascular diseases. Here, we describe the isolation, sequencing and tridimensional homology modeling of the first C-type natriuretic peptide isolated from scorpion venom. In addition, its effects on the renal function of rats and on the mRNA expression of natriuretic peptide receptors in the kidneys are delineated. Fractionation of Tityus serrulatus venom using chromatographic techniques yielded a peptide with a molecular mass of 2190.64 Da, which exhibited the pattern of disulfide bridges that is characteristic of a C-type NP (TsNP, T. serrulatus Natriuretic Peptide). In the isolated perfused rat kidney assay, treatment with two concentrations of TsNP (0.03 and 0.1 µg/mL) increased the perfusion pressure, glomerular filtration rate and urinary flow. After 60 min of treatment at both concentrations, the percentages of sodium, potassium and chloride transport were decreased, and the urinary cGMP concentration was elevated. Natriuretic peptide receptor-A (NPR-A) mRNA expression was down regulated in the kidneys treated with both concentrations of TsNP, whereas NPR-B, NPR-C and CG-C mRNAs were up regulated at the 0.1 µg/mL concentration. In conclusion, this work describes the isolation and modeling of the first natriuretic peptide isolated from scorpion venom. In addition, examinations of the renal actions of TsNP indicate that its effects may be related to the activation of NPR-B, NPR-C and GC-C.


Assuntos
Rim/efeitos dos fármacos , Peptídeo Natriurético Tipo C/isolamento & purificação , Venenos de Escorpião/isolamento & purificação , Escorpiões/química , Sequência de Aminoácidos , Animais , Brasil , GMP Cíclico/genética , GMP Cíclico/metabolismo , Regulação para Baixo , Taxa de Filtração Glomerular , Rim/metabolismo , Masculino , Dados de Sequência Molecular , Peptídeo Natriurético Tipo C/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores do Fator Natriurético Atrial/genética , Receptores do Fator Natriurético Atrial/metabolismo , Venenos de Escorpião/química , Alinhamento de Sequência , Regulação para Cima
8.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-954706

RESUMO

Background : Apis mellifera stings are a problem for public health worldwide, particularly in Latin America due to the aggressiveness of its Africanized honeybees. Massive poisoning by A. mellifera venom (AmV) affects mainly the cardiovascular system, and several works have described its actions on heart muscle. Nevertheless, no work on the pharmacological action mechanisms of the AmV in isolated aorta has been reported. Thus, the present work aimed to investigate the actions of AmV and its main fractions, phospholipase A2 (PLA2) and melittin, on isolated aorta rings and a probable action mechanism. Results : AmV and the complex PLA2 + melittin (0.1-50 μg/mL) caused contraction in endothelium-containing aorta rings, but neither isolated PLA2 nor melittin were able to reproduce the effect. Endothelium removal did not change the maximum vasoconstrictor effect elicited by AmV. Ca2+-free medium, as well as treatment with phentolamine (5 μM), verapamil (10 μM), losartan (100 μM), and U-73122 (10 μM, a phospholipase C inhibitor), eliminated the AmV-induced contractile effects. Conclusions : In conclusion, AmV caused contractile effect in aorta rings probably through the involvement of voltage-operated calcium channels, AT1 and α-adrenergic receptors via the downstream activation of phospholipase C. The protein complex, PLA2 + melittin, was also able to induce vasoconstriction, whereas the isolated proteins were not.(AU)


Assuntos
Animais , Ratos , Vasoconstritores , Abelhas , Sistema Cardiovascular , Fosfolipases A2 , Mordeduras e Picadas
9.
Artigo em Inglês | MEDLINE | ID: mdl-22899963

RESUMO

Secretory phospholipases A(2) (sPLA(2)) exert proinflammatory actions through lipid mediators. These enzymes have been found to be elevated in many inflammatory disorders such as rheumatoid arthritis, sepsis, and atherosclerosis. The aim of this study was to evaluate the effect of harpalycin 2 (Har2), an isoflavone isolated from Harpalyce brasiliana Benth., in the enzymatic, edematogenic, and myotoxic activities of sPLA(2) from Bothrops pirajai, Crotalus durissus terrificus, Apis mellifera, and Naja naja venoms. Har2 inhibits all sPLA(2) tested. PrTX-III (B. pirajai venom) was inhibited at about 58.7%, Cdt F15 (C. d. terrificus venom) at 78.8%, Apis (from bee venom) at 87.7%, and Naja (N. naja venom) at 88.1%. Edema induced by exogenous sPLA(2) administration performed in mice paws showed significant inhibition by Har2 at the initial step. In addition, Har2 also inhibited the myotoxic activity of these sPLA(2)s. In order to understand how Har2 interacts with these enzymes, docking calculations were made, indicating that the residues His48 and Asp49 in the active site of these enzymes interacted powerfully with Har2 through hydrogen bonds. These data pointed to a possible anti-inflammatory activity of Har2 through sPLA(2) inhibition.

10.
BMC Complement Altern Med ; 12: 139, 2012 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-22925825

RESUMO

BACKGROUND: Harpalycin 2 (HP-2) is an isoflavone isolated from the leaves of Harpalyce brasiliana Benth., a snakeroot found in northeast region of Brazil and used in folk medicine to treat snakebite. Its leaves are said to be anti-inflammatory. Secretory phospholipases A2 are important toxins found in snake venom and are structurally related to those found in inflammatory conditions in mammals, as in arthritis and atherosclerosis, and for this reason can be valuable tools for searching new anti-phospholipase A2 drugs. METHODS: HP-2 and piratoxin-III (PrTX-III) were purified through chromatographic techniques. The effect of HP-2 in the enzymatic activity of PrTX-III was carried out using 4-nitro-3-octanoyloxy-benzoic acid as the substrate. PrTX-III induced platelet aggregation was inhibited by HP-2 when compared to aristolochic acid and p-bromophenacyl bromide (p-BPB). In an attempt to elucidate how HP-2 interacts with PrTX-III, mass spectrometry, circular dichroism and intrinsic fluorescence analysis were performed. Docking scores of the ligands (HP-2, aristolochic acid and p-BPB) using PrTX-III as target were also calculated. RESULTS: HP-2 inhibited the enzymatic activity of PrTX-III (IC50 11.34 ± 0.28 µg/mL) although it did not form a stable chemical complex in the active site, since mass spectrometry measurements showed no difference between native (13,837.34 Da) and HP-2 treated PrTX-III (13,856.12 Da). A structural analysis of PrTX-III after treatment with HP-2 showed a decrease in dimerization and a slight protein unfolding. In the platelet aggregation assay, HP-2 previously incubated with PrTX-III inhibited the aggregation when compared with untreated protein. PrTX-III chemical treated with aristolochic acid and p-BPB, two standard PLA2 inhibitors, showed low inhibitory effects when compared with the HP-2 treatment. Docking scores corroborated these results, showing higher affinity of HP-2 for the PrTX-III target (PDB code: 1GMZ) than aristolochic acid and p-BPB. HP-2 previous incubated with the platelets inhibits the aggregation induced by untreated PrTX-III as well as arachidonic acid. CONCLUSION: HP-2 changes the structure of PrTX-III, inhibiting the enzymatic activity of this enzyme. In addition, PrTX-III platelet aggregant activity was inhibited by treatment with HP-2, p-BPB and aristolochic acid, and these results were corroborated by docking scores.


Assuntos
Benzodioxóis/farmacologia , Bothrops , Venenos de Crotalídeos/enzimologia , Inibidores Enzimáticos/farmacologia , Fabaceae/química , Fosfolipases A2 do Grupo II/antagonistas & inibidores , Isoflavonas/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Acetofenonas/farmacologia , Animais , Ácidos Aristolóquicos/farmacologia , Benzodioxóis/isolamento & purificação , Benzodioxóis/uso terapêutico , Brasil , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/uso terapêutico , Fosfolipases A2 do Grupo II/química , Humanos , Isoflavonas/isolamento & purificação , Isoflavonas/uso terapêutico , Nitrobenzoatos/metabolismo , Fitoterapia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Folhas de Planta , Proteínas de Répteis/antagonistas & inibidores , Proteínas de Répteis/química , Mordeduras de Serpentes/tratamento farmacológico , Mordeduras de Serpentes/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA