Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 563760, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34887878

RESUMO

The anaphase promoting complex/cyclosome (APC/C), a member of the E3 ubiquitin ligase family, plays an important role in recognizing the substrates to be ubiquitylated. Progression of anaphase, and therefore, of the cell cycle, is coordinated through cyclin degradation cycles dependent on proteolysis triggered by APC/C. The APC/C activity depends on the formation of a pocket comprising the catalytic subunits, APC2, APC11, and APC10. Among these, the role of APC11 outside the cell division cycle is poorly understood. Therefore, the goal of this work was to analyze the function of APC11 during plant development by characterizing apc11 knock-down mutant lines. Accordingly, we observed decreased apc11 expression in the mutant lines, followed by a reduction in meristem root size based on the cortical cell length, and an overall size diminishment throughout the development. Additionally, crosses of apc11-1 and amiR-apc11 with plants carrying a WUSCHEL-RELATED HOMEOBOX5 (WOX5) fluorescent marker showed a weakening of the green fluorescent protein-positive cells in the Quiescent Center. Moreover, plants with apc11-1 show a decreased leaf area, together with a decrease in the cell area when the shoot development was observed by kinematics analysis. Finally, we observed a decreased APC/C activity in the root and shoot meristems in crosses of pCYCB1;1:D-box-GUS with apc11-1 plants. Our results indicate that APC11 is important in the early stages of development, mediating meristematic architecture through APC/C activity affecting the overall plant growth.

2.
Plants (Basel) ; 10(9)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34579337

RESUMO

In a growing population, producing enough food has become a challenge in the face of the dramatic increase in climate change. Plants, during their evolution as sessile organisms, developed countless mechanisms to better adapt to the environment and its fluctuations. One important way is through the plasticity of their body and their forms, which are modulated during plant growth by accurate control of cell divisions. A family of serine/threonine kinases called cyclin-dependent kinases (CDK) is a key regulator of cell divisions by controlling cell cycle progression. In this review, we compile information on the primary response of plants in the regulation of the cell cycle in response to environmental stresses and show how the cell cycle proteins (mainly the cyclin-dependent kinases) involved in this regulation can act as components of environmental response signaling cascades, triggering adaptive responses to drive the cycle through climate fluctuations. Understanding the roles of CDKs and their regulators in the face of adversity may be crucial to meeting the challenge of increasing agricultural productivity in a new climate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA