Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 53(11): 1553-1563, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34663923

RESUMO

Esophageal squamous cell carcinoma (ESCC) shows remarkable variation in incidence that is not fully explained by known lifestyle and environmental risk factors. It has been speculated that an unknown exogenous exposure(s) could be responsible. Here we combine the fields of mutational signature analysis with cancer epidemiology to study 552 ESCC genomes from eight countries with varying incidence rates. Mutational profiles were similar across all countries studied. Associations between specific mutational signatures and ESCC risk factors were identified for tobacco, alcohol, opium and germline variants, with modest impacts on mutation burden. We find no evidence of a mutational signature indicative of an exogenous exposure capable of explaining differences in ESCC incidence. Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like (APOBEC)-associated mutational signatures single-base substitution (SBS)2 and SBS13 were present in 88% and 91% of cases, respectively, and accounted for 25% of the mutation burden on average, indicating that APOBEC activation is a crucial step in ESCC tumor development.


Assuntos
Neoplasias Esofágicas/epidemiologia , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/epidemiologia , Carcinoma de Células Escamosas do Esôfago/genética , Mutação , Desaminases APOBEC/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Aldeído-Desidrogenase Mitocondrial/genética , Brasil/epidemiologia , China/epidemiologia , Feminino , Humanos , Incidência , Irã (Geográfico)/epidemiologia , Masculino , Pessoa de Meia-Idade , Proteína Supressora de Tumor p53/genética , Reino Unido/epidemiologia , Sequenciamento Completo do Genoma
2.
New Phytol ; 209(1): 319-33, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26214613

RESUMO

The legume genus Mimosa has > 500 species, with two major centres of diversity, Brazil (c. 350 spp.) and Mexico (c. 100 spp.). In Brazil most species are nodulated by Burkholderia. Here we asked whether this is also true of native and endemic Mexican species. We have tested this apparent affinity for betaproteobacteria by examining the symbionts of native and endemic species of Mimosa in Mexico, especially from the central highlands where Mimosa spp. have diversified. Nodules were tested for betaproteobacteria using in situ immunolocalization. Rhizobia isolated from the nodules were genetically characterized and tested for their ability to nodulate Mimosa spp. Immunological analysis of 25 host taxa suggested that most (including all the highland endemics) were not nodulated by betaproteobacteria. Phylogenetic analyses of 16S rRNA, recA, nodA, nodC and nifH genes from 87 strains isolated from 20 taxa confirmed that the endemic Mexican Mimosa species favoured alphaproteobacteria in the genera Rhizobium and Ensifer: this was confirmed by nodulation tests. Host phylogeny, geographic isolation and coevolution with symbionts derived from very different soils have potentially contributed to the striking difference in the choice of symbiotic partners by Mexican and Brazilian Mimosa species.


Assuntos
Mimosa/microbiologia , Rhizobium/genética , Simbiose , Proteínas de Bactérias/genética , Sequência de Bases , Evolução Biológica , Especificidade de Hospedeiro , México , Filogenia , Nodulação , Rhizobium/classificação , Rhizobium/fisiologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA