Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 28(5): 116, 2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35397020

RESUMO

According to P.K. Chattaraj. J Phys Chem A 2001, 105, 511-513 "the maximum Fukui function site is the best for the frontier-controlled soft-soft reactions whereas for the charge-controlled hard-hard interactions the preferred site is associated with the maximum net charge and not necessarily the minimum Fukui function". Taking into account these outcomes in this research is explored this reactivity scheme using in first case the reaction between fulminic acid with ethylene (reference reaction), after is varying the dipolarophile in the reaction between fulminic acid with acetylene, and finally is varying the dipole in the reaction between formonitrile imine with ethylene. These results allow study parameter such as charge transfer, polarizability, covalent character on bonding, among other; also shown the preference by the sf- / sf+ interactions in the transition state on the sf- / sf- interactions. On the other hand, these results also were justified using net electrophilicity which is defined as the electrophilic power of a system relative to its own nucleophilic power.

2.
Heliyon ; 7(4): e06675, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33898817

RESUMO

This work presents the study of a series of electrocyclic reactions with the main aim of obtaining new insights into the reaction process along IRCs. The energy variation of the different reaction paths as well as the different transition states have been calculated. These trends are according to the experimental data. The natural bond orbitals have been obtained and the second order perturbational theory analysis has been carried out to determine the main charge transfers due to delocalization. Bond reactivity indexes have been used to describe the reactivity mechanism in a local way. These reactivity indexes are also based on NBOs and this has made it possible to connect the results of the indexes with the previous analysis. To determine quantitatively the bond structure, we used the quantum theory of atoms in molecules and we have hereby completed the information obtained from the NBO analysis. Finally, we used the Hirshfeld population analysis as an approximation to understand how the load density changes in the different reaction pathways, and we have connected these variations with the information obtained from the bond structure. The results has found that the reaction path with the lowest energy barrier Transition State Inward Conrotatory (TSIC) or Transition State Outward Conrotatory (TSOC) is determined by two magnitudes: the charge donations by delocalisation of the substituents (which we obtained from the Second Order Perturbational Theory Analysis of the NBOs) and in the case that these donations were very similar, the non-covalent interactions dominated (which we studied by means of the interaction energies of the Hirshfeld charges). Additionality, the most important factor influencing the lower energy reaction path was the interaction of lone pairs of the substituents with the σ∗(C-C) bond that is broken at the opening of the cycle. The alignment of these lone pairs with the C-C bond favours charge donation between them and, as can be seen in the discussion, this alignment varies depending on whether the structure is TSIC and TSOC.

3.
Heliyon ; 6(7): e04441, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32715128

RESUMO

In this study the thermal cyclotrimerization reactions of fluoro- and chloroacetylenes involving regioselectively stepwise {2 + 2} and stepwise {4 + 2} cycloadditions were studied using the topological analysis of the electron localization function (ELF), the quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analyses. These methodologies have shown that the electronic reorganization in the regioselectively stepwise {2 + 2} and stepwise {4 + 2} cycloadditions may be considered as {2n+2n} and {2π+2n} pseudodiradical process, respectively. Finally, the last phase of this thermal reaction can be understood as an electronic migration process under the pseudodiradical character in the thermal ring-opening reaction, with the subsequent formation of reaction products. In this sense, new insights are reported on the electronic behavior in the bond formation in the thermal cyclotrimerization of fluoroacetylene.

4.
Antioxidants (Basel) ; 8(10)2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31600955

RESUMO

In this work, we present results about the synthesis and the antioxidant properties of seven adenosine derivatives. Four of these compounds were synthesized by substituting the N6-position of adenosine with aliphatic amines, and three were obtained by modification of the ribose ring. All compounds were obtained in pure form using column chromatography, and their structures were elucidated by infrared spectroscopy (IR) and Nuclear Magnetic Resonance (NMR). All adenosine derivatives were further evaluated in vitro as free radical scavengers. Our results show that compounds 1c, 3, and 5 display a potent antioxidant effect compared with the reference compound ascorbic acid. In addition, the absorption, distribution, metabolism and excretion (ADME) calculations show favorable pharmacokinetic parameters for the set of compounds analyzed, which guarantees their suitability as potential antioxidant drugs. Furthermore, theoretical analyses using Molecular Quantum Similarity and reactivity indices were performed in order to discriminate the different reactive sites involved in oxidative processes.

5.
Heliyon ; 5(8): e02174, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31417970

RESUMO

New N-propargyl tetrahydroquinolines 6a-g have been synthesized efficiently through the cationic Povarov reaction (a domino Mannich/Friedel-Crafts reaction), catalyzed by Indium (III) chloride (InCl3), from the corresponding N-propargylanilines preformed, formaldehyde and N-vinylformamide, with good to moderate yields. All tetrahydroquinoline derivatives obtained were evaluated in vitro as free radical scavengers. Results showed that compound 6c presents a potent antioxidant effect compared with ascorbic acid, used as a reference compound. ADME predictions also revealed favorable pharmacokinetic parameters for the synthesized compounds, which warrant their suitability as potentials antioxidant. Additionally, a theoretical study using Molecular Quantum Similarity and reactivity indices were developed to discriminate different reactive sites in the new molecules in which the oxidative process occurs.

6.
Bioorg Chem ; 90: 103034, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31280015

RESUMO

The chalcone and bis-chalcone derivatives have been synthesized under sonication conditions via Claisen-Schmidt condensation with KOH in ethanol at room temperature (20-89%). The structures were established on the basis of NMR, IR, Single-crystal XRD, and MS. The best compound 3u had inhibitory activity (IC50 = 7.50 µM). The synthesis, the antioxidative properties, chemical reactivity descriptors supported in Density Functional Theory (DFT), acetylcholinesterase (AChE) inhibition and their potential binding modes, and affinity were predicted by molecular docking of a number of morpholine-chalcones and quinoline-chalcone. A series of bis-chalcones are also reported. Molecular docking and an enzyme kinetic study on compound 3u suggested that it simultaneously binds to the catalytic active site (CAS) and peripheral anionic site (PAS) of AChE. Moreover, the pharmacokinetic profile of these compounds was investigated using a computational method.


Assuntos
Acetilcolinesterase/metabolismo , Antioxidantes/química , Chalconas/química , Inibidores da Colinesterase/química , Acetilcolinesterase/química , Antioxidantes/síntese química , Antioxidantes/metabolismo , Antioxidantes/farmacocinética , Domínio Catalítico , Chalconas/síntese química , Chalconas/metabolismo , Chalconas/farmacocinética , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/farmacocinética , Ensaios Enzimáticos , Humanos , Cinética , Simulação de Acoplamento Molecular , Ligação Proteica , Ondas Ultrassônicas
7.
J Comput Aided Mol Des ; 32(12): 1315-1336, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30367309

RESUMO

In the last decades, human protein kinases (PKs) have been relevant as targets in the development of novel therapies against many diseases, but the study of Mycobacterium tuberculosis PKs (MTPKs) involved in tuberculosis pathogenesis began much later and has not yet reached an advanced stage of development. To increase knowledge of these enzymes, in this work we studied the structural features of MTPKs, with focus on their ATP-binding sites and their interactions with inhibitors. PknA, PknB, and PknG are the most studied MTPKs, which were previously crystallized; ATP-competitive inhibitors have been designed against them in the last decade. In the current work, reported PknA, PknB, and PknG inhibitors were extracted from literature and their orientations inside the ATP-binding site were proposed by using docking method. With this information, interaction fingerprints were elaborated, which reveal the more relevant residues for establishing chemical interactions with inhibitors. The non-crystallized MTPKs PknD, PknF, PknH, PknJ, PknK, and PknL were also studied; their three-dimensional structural models were developed by using homology modeling. The main characteristics of MTPK ATP-binding sites (the non-crystallized and crystallized MTPKs, including PknE and PknI) were accounted; schemes of the main polar and nonpolar groups inside their ATP-binding sites were constructed, which are suitable for a major understanding of these proteins as antituberculotic targets. These schemes could be used for establishing comparisons between MTPKs and human PKs in order to increase selectivity of MTPK inhibitors. As a key tool for guiding medicinal chemists interested in the design of novel MTPK inhibitors, our work provides a map of the structural elements relevant for the design of more selective ATP-competitive MTPK inhibitors.


Assuntos
Trifosfato de Adenosina/química , Mycobacterium tuberculosis/química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/química , Sítios de Ligação , Cristalização , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/enzimologia , Conformação Proteica , Proteínas Serina-Treonina Quinases/antagonistas & inibidores
8.
Molecules ; 22(6)2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28635627

RESUMO

Mycobacterium tuberculosis remains one of the world's most devastating pathogens. For this reason, we developed a study involving 3D pharmacophore searching, selectivity analysis and database screening for a series of anti-tuberculosis compounds, associated with the protein kinases A, B, and G. This theoretical study is expected to shed some light onto some molecular aspects that could contribute to the knowledge of the molecular mechanics behind interactions of these compounds, with anti-tuberculosis activity. Using the Molecular Quantum Similarity field and reactivity descriptors supported in the Density Functional Theory, it was possible to measure the quantification of the steric and electrostatic effects through the Overlap and Coulomb quantitative convergence (alpha and beta) scales. In addition, an analysis of reactivity indices using global and local descriptors was developed, identifying the binding sites and selectivity on these anti-tuberculosis compounds in the active sites. Finally, the reported pharmacophores to PKn A, B and G, were used to carry out database screening, using a database with anti-tuberculosis drugs from the Kelly Chibale research group (http://www.kellychibaleresearch.uct.ac.za/), to find the compounds with affinity for the specific protein targets associated with PKn A, B and G. In this regard, this hybrid methodology (Molecular Mechanic/Quantum Chemistry) shows new insights into drug design that may be useful in the tuberculosis treatment today.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Bases de Dados de Compostos Químicos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Antituberculosos/metabolismo , Domínio Catalítico , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de GMP Cíclico/química , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Desenho de Fármacos , Humanos , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Relação Quantitativa Estrutura-Atividade , Tuberculose/tratamento farmacológico
9.
J Mol Model ; 22(7): 164, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27329189

RESUMO

Though QSAR was originally developed in the context of physical organic chemistry, it has been applied very extensively to chemicals (drugs) which act on biological systems, in this idea one of the most important QSAR methods is the 3D QSAR model. However, due to the complexity of understanding the results it is necessary to postulate new methodologies to highlight their physical-chemical meaning. In this sense, this work postulates new insights to understand the CoMFA results using molecular quantum similarity and chemical reactivity descriptors within the framework of density functional theory. To obtain these insights a simple theoretical scheme involving quantum similarity (overlap, coulomb operators, their euclidean distances) and chemical reactivity descriptors such as chemical potential (µ), hardness (ɳ), softness (S), electrophilicity (ω), and the Fukui functions, was used to understand the substitution effect. In this sense, this methodology can be applied to analyze the biological activity and the stabilization process in the non-covalent interactions on a particular molecular set taking a reference compound.

10.
Phys Chem Chem Phys ; 17(35): 23104-11, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26278203

RESUMO

The validity of maximum hardness, minimum electrophilicity and minimum polarizability principles is assessed to explain the phenomenon of torquoselectivity (inward and outward preference) in the conrotatory ring opening reactions of trans-3,4-dimethylcyclobutene into Z,Z- and E,E-butadienes and 3-formylcyclobutene into E- and Z-2,4-pentadienals. The hardness, average polarizability and electrophilicity profiles are computed along the intrinsic reaction coordinate and divided into three relevant stages. The transition states involved in the unfavorable inward conrotation of trans-3,4-dimethylcyclobutene and in the unfavorable outward conrotation of 3-formylcyclobutene are found to be higher in energy, softer, more electrophilic and more polarizable than the transition states corresponding to the torquoselective outward and inward conrotations, respectively. These observations are in conformity with the maximum hardness, minimum electrophilicity and minimum polarizability principles. The sharp changes in the local reactivity descriptors are also observed around the transition states in their respective profiles.


Assuntos
Ciclobutanos/química , Elétrons , Estrutura Molecular , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA