Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37291700

RESUMO

Ubiquinone (UQ) is a fundamental mitochondrial electron transport chain component. This compound is synthesized as the condensation of a p-substituted benzoic acid and a polyisoprenic moiety catalyzed by the enzyme 4-hydroxybenzoate polyprenyltransferase (EC 2.5.1.39). In Plasmodium spp., this enzyme is still uncharacterized. In this work, we expressed the sequence of the Plasmodium falciparum PF3D7_0607500 gene (abbreviated as PfCOQ2) in a coq2Δ mutant strain of Saccharomyces cerevisiae, and studied the functionality of its gene product. This open reading frame could complement S. cerevisiae coq2Δ mutant growth defect on media with glycerol as a carbon source. Further, UQ was unequivocally identified in lipid extracts from this coq2Δ mutant when expressing PfCOQ2. Remarkably, UQ was detected under those conditions when S. cerevisiae cells were metabolically labeled with either [ring-14C(U)]-p-aminobenzoic acid or [ring-14C(U)]-4-hydroxybenzoic acid. However, no UQ was detected in P. falciparum if labeled with p-aminobenzoic acid. These results indicate that PfCOQ2 is a 4-hydroxybenzoate polyprenyltransferase. Further, its substrate profile seems not dissimilar to that of S. cerevisiae, but, as in other organisms, p-aminobenzoic acid does not act as an aromatic precursor in UQ biosynthesis in P. falciparum. The reason for this last feature remains to be established, but may lie upstream of PfCOQ2.


Assuntos
Plasmodium falciparum , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Plasmodium falciparum/genética , Ácido 4-Aminobenzoico
2.
Front Chem ; 10: 1035548, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531309

RESUMO

Plasmodium falciparum is the etiological agent of human malaria, one of the most widespread diseases in tropical and subtropical regions. Drug resistance is one of the biggest problems in controlling the disease, which leads to the need to discover new antimalarial compounds. One of the most promissory drugs purposed is fosmidomycin, an inhibitor of the biosynthesis of isoprene units by the methylerythritol 4-phosphate (MEP) pathway, which in some cases failed in clinical studies. Once formed, isoprene units are condensed to form longer structures such as farnesyl and geranylgeranyl pyrophosphate, which are necessary for Heme O and A formation, ubiquinone, and dolichyl phosphate biosynthesis as well as for protein isoprenylation. Even though the natural substrates of polyprenyl transferases and synthases are polyprenyl pyrophosphates, it was already demonstrated that isoprenoid alcohols (polyprenols) such as farnesol (FOH) and geranylgeraniol (GGOH) can rescue parasites from fosmidomycin. This study better investigated how this rescue phenomenon occurs by performing drug-rescue assays. Similarly, to FOH and GGOH, it was observed that phytol (POH), a 20-carbon plant isoprenoid, as well as unsaponifiable lipid extracts from foods rescue parasites from the antimalarial effect of fosmidomycin. Contrarily, neither dolichols nor nonaprenol rescue parasites from fosmidomycin. Considering this, here we characterized the transport of FOH, GGOH, and POH. Once incorporated, it was observed that these substances are phosphorylated, condensed into longer isoprenoid alcohols, and incorporated into proteins and dolichyl phosphates. Through proteomic and radiolabelling approaches, it was found that prenylated proteins are naturally attached to several isoprenoids, derived from GGOH, dolichol, and POH if exogenously added. Furthermore, the results suggest the presence of at least two promiscuous protein prenyltransferases in the parasite: one enzyme which can use FPP among other unidentified substrates and another enzyme that can use GGPP, phytyl pyrophosphate (PPP), and dolichols, among other substrates not identified here. Thus, further evidence was obtained for dolichols and other isoprenoid products attached to proteins. This study helps to better understand the apicoplast-targeting antimalarial mechanism of action and a novel post-translational modification of proteins in P. falciparum.

3.
J Immunol Res ; 2019: 3105817, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31871954

RESUMO

The severity of Plasmodium falciparum malaria is associated with parasite cytoadherence, but there is limited knowledge about the effect of parasite cytoadherence in malaria-associated acute respiratory distress syndrome (ARDS). Our objective was to evaluate the cytoadherence of infected red blood cells (iRBCs) in a murine model of ARDS and to appraise a potential function of endothelial protein C receptor (EPCR) in ARDS pathogenesis. DBA/2 mice infected with P. berghei ANKA were classified as ARDS- or hyperparasitemia- (HP-) developing mice according to respiratory parameters and parasitemia. Lungs, blood, and bronchoalveolar lavage were collected for gene expression or protein analyses. Primary cultures of microvascular lung endothelial cells from DBA/2 mice were analyzed for iRBC interactions. Lungs from ARDS-developing mice showed evidence of iRBC accumulation along with an increase in EPCR and TNF concentrations. Furthermore, TNF increased iRBC adherence in vitro. Dexamethasone-treated infected mice showed low levels of TNF and EPCR mRNA expression and, finally, decreased vascular permeability, thus protecting mice from ARDS. In conclusion, we identified that increased iRBC cytoadherence in the lungs underlies malaria-associated ARDS in DBA/2-infected mice and that inflammation increased cytoadherence capacity, suggesting a participation of EPCR and a conceivable target for drug development.


Assuntos
Suscetibilidade a Doenças , Receptor de Proteína C Endotelial/metabolismo , Malária/complicações , Malária/parasitologia , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/metabolismo , Animais , Biomarcadores , Citocinas/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Imuno-Histoquímica , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Plasmodium berghei , Plasmodium falciparum , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA