Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
F1000Res ; 13: 554, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39155967

RESUMO

Chronic respiratory diseases often necessitate lung transplantation due to irreversible damage. Organ engineering offers hope through stem cell-based organ generation. However, the crucial sterilization step in scaffold preparation poses challenges. This study conducted a systematic review of studies that analysed the extracellular matrix (ECM) conditions of decellularised lungs subjected to different sterilisation processes. A search was performed for articles published in the PubMed, Web of Sciences, Scopus, and SciELO databases according to the PRISMA guidelines. Overall, five articles that presented positive results regarding the effectiveness of the sterilisation process were selected, some of which identified functional damage in the ECM. Was possible concluded that regardless of the type of agent used, physical or chemical, all of them demonstrated that sterilisation somehow harms the ECM. An ideal protocol has not been found to be fully effective in the sterilisation of pulmonary scaffolds for use in tissue and/or organ engineering.


Assuntos
Matriz Extracelular , Pulmão , Esterilização , Alicerces Teciduais , Esterilização/métodos , Humanos , Engenharia Tecidual/métodos , Animais
4.
Artigo em Inglês | MEDLINE | ID: mdl-38310575

RESUMO

BACKGROUND: Neglected tropical diseases (NTDs) are parasitic and bacterial diseases that affect approximately 149 countries, mainly the poor population without basic sanitation. Among these, African Human Trypanosomiasis (HAT), known as sleeping sickness, shows alarming data, with treatment based on suramin and pentamidine in the initial phase and melarsoprol and eflornithine in the chronic phase. Thus, to discover new drugs, several studies point to rhodesain as a promising drug target due to the function of protein degradation and intracellular transport of proteins between the insect and host cells and is present in all cycle phases of the parasite. METHODOLOGY: Here, based on the previous studies by Nascimento et al. (2021) that show the main rhodesain inhibitors development in the last decade, molecular docking and dynamics were applied in these inhibitors datasets to reveal crucial information that can be into drug design. Thus, conventional and covalent docking was employed and highlighted the presence of Michael acceptors in the ligands in a peptidomimetics scaffold, and interaction with Gly19, Gly23, Gly65, Asp161, and Trp184 is essential to the inhibiting activity. RESULTS: Also, our findings using MD simulations and MM-PBSA calculations confirmed Gly19, Gly23, Gly65, Asp161, and Trp184, showing high binding energy (ΔGbind between -72.782 to -124.477 kJ.mol-1). In addition, Van der Waals interactions have a better contribution (-140,930 to -96,988 kJ.mol-1) than electrostatic forces (-43,270 to -6,854 kJ.mol-1), indicating Van der Waals interactions are the leading forces in forming and maintaining ligand-rhodesain complexes. CONCLUSION: Furthermore, the Dynamic Cross-Correlation Maps (DCCM) show more correlated movements for all complexes than the free rhodesain and strong interactions in the regions of the aforementioned residues. Principal Component Analysis (PCA) demonstrates complex stability corroborating with RMSF and RMSD. This study can provide valuable insights that can guide researchers worldwide to discover a new promising drug against HAT.

6.
Int J Biol Macromol ; 254(Pt 3): 127651, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37949265

RESUMO

Four new nitrogen-containing heterocyclic derivatives (acridine, quinoline, indole, pyridine) were synthesized and their biological properties were evaluated. The compounds showed affinity for DNA and HSA, with CAIC and CAAC displaying higher binding constants (Kb) of 9.54 × 104 and 1.06 × 106, respectively. The fluorescence quenching assay (Ksv) revealed suppression values ranging from 0.34 to 0.64 × 103 M-1 for ethidium bromide (EB) and 0.1 to 0.34 × 103 M-1 for acridine orange (AO). Molecular docking confirmed the competition of the derivatives with intercalation probes at the same binding site. At 10 µM concentrations, the derivatives inhibited topoisomerase IIα activity. In the antiproliferative assays, the compounds demonstrated activity against MCF-7 and T47-D tumor cells and nonhemolytic profile. Regarding toxicity, no acute effects were observed in the embryos. However, some compounds caused enzymatic and cardiac changes, particularly the CAIC, which increased SOD activity and altered heart rate compared to the control. These findings suggest potential antitumor action of the derivatives and indicate that substituting the acridine core with different cores does not interfere with their interaction and topoisomerase inhibition. Further investigations are required to assess possible toxicological effects, including reactive oxygen species generation.


Assuntos
Antineoplásicos , Inibidores da Topoisomerase , Inibidores da Topoisomerase/farmacologia , Inibidores da Topoisomerase/química , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Antineoplásicos/química , DNA/química , Substâncias Intercalantes/farmacologia , Acridinas/farmacologia , Acridinas/química , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular
7.
Artigo em Inglês | MEDLINE | ID: mdl-38038012

RESUMO

Colorectal cancer (CRC) is the third most common worldwide cancer with high mortality. Factors such as more effective screening programs and improvements in treatment modalities have favored a decrease in the incidence and mortality rate of colorectal cancer in the last three decades. Metastatic CRC is incurable in most cases, and therapy using multiple drugs can increase patients' life expectancy by 2 to 3 years. Chemotherapy is the primary treatment, and fluoropyrimidines correspond to the first treatment line. They can be used in monotherapy or therapeutic schemes of oxaliplatin, FOLFOX (intravenous fluorouracil, leucovorin, and oxaliplatin), and CAPOX (oral capecitabine and oxaliplatin) or regimens based on Irinotecan, such FOLFIRI (fluorouracil, leucovorin, and Irinotecan) and CAPIRI (capecitabine and Irinotecan). Like Camptothecin, irinotecan and other analogs have a mechanism of action based on forming a ternary complex with Topoisomerase I and DNA by reversibly binding, providing DNA damage and consequent cell death. This way, topoisomerases are vital enzymes for DNA maintenance and cell viability. Thus, here we will review the main works demonstrating the correlation between the inhibition of different isoforms of topoisomerases and the in vitro cytotoxic activity in colon cancer. The findings revealed that natural compounds, semi-synthetic and synthetic analogs showed potential cytotoxicity against several colon cancer cell lines in vitro and that this activity was often accompanied by the ability to inhibit type I and II topoisomerases, demonstrating that these enzymes can be promising drug targets for the development of new chemotherapeutics against colon cancer.

8.
Curr Med Chem ; 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37921174

RESUMO

Neglected tropical diseases (NTDs) are prevalent in tropical and subtropical countries, and schistosomiasis is among the most relevant diseases worldwide. In addition, one of the two biggest problems in developing drugs against this disease is related to drug resistance, which promotes the demand to develop new drug candidates for this purpose. Thus, one of the drug targets most explored, Schistosoma mansoni Cathepsin B1 (SmCB1 or Sm31), provides new opportunities in drug development due to its essential functions for the parasite's survival. In this way, here, the latest developments in drug design studies targeting SmCB1 were approached, focusing on the most promising analogs of nitrile, vinyl sulphones, and peptidomimetics. Thus, it was shown that despite being a disease known since ancient times, it remains prevalent throughout the world, with high mortality rates. The therapeutic arsenal of antischistosomal drugs consists only of praziquantel, which is widely used for this purpose and has several advantages, such as efficacy and safety. However, it has limitations, such as the impossibility of acting on the immature worm and exploring new targets to overcome these limitations. SmCB1 shows its potential as a cysteine protease with a catalytic triad consisting of Cys100, His270, and Asn290. Thus, design studies of new inhibitors focus on their catalytic mechanism for designing new analogs. In fact, nitrile and sulfonamide analogs show the most significant potential in drug development, showing that these chemical groups can be better exploited in drug discovery against schistosomiasis. We hope this manuscript guides the authors in searching for promising new antischistosomal drugs.

9.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37895886

RESUMO

The N-acylhydrazone function has been reported as a pharmacophore group of molecules with diverse pharmacological activities, including anti-inflammatory effects. Therefore, this study was designed to evaluate the anti-inflammatory potential of the compound N'-(3-(1H-indol-3-yl)benzylidene)-2-cyanoacetohydrazide (JR19) in vivo. The study started with the carrageenan-induced peritonitis model, followed by an investigation of leukocyte migration using the subcutaneous air pouch test and an assessment of the antinociceptive profile using formalin-induced pain. A preliminary molecular docking study focusing on the crystallographic structures of NFκB, iNOS, and sGC was performed to determine the likely mechanism of action. The computational study revealed satisfactory interaction energies with the selected targets, and the same peritonitis model was used to validate the involvement of the nitric oxide pathway and cytokine expression in the peritoneal exudate of mice pretreated with L-NAME or methylene blue. In the peritonitis assay, JR19 (10 and 20 mg/kg) reduced leukocyte migration by 59% and 52%, respectively, compared to the vehicle group, with the 10 mg/kg dose used in subsequent assays. In the subcutaneous air pouch assay, the reduction in cell migration was 66%, and the response to intraplantar formalin was reduced by 39%, particularly during the inflammatory phase, suggesting that the compound lacks central analgesic activity. In addition, a reversal of the anti-inflammatory effect was observed in mice pretreated with L-NAME or methylene blue, indicating the involvement of iNOS and sGC in the anti-inflammatory response of JR19. The compound effectively and significantly decreased the levels of IL-6, TNF-α, IL-17, and IFN-γ, and this effect was reversed in animals pretreated with L-NAME, supporting a NO-dependent anti-inflammatory effect. In contrast, pretreatment with methylene blue only reversed the reduction in TNF-α levels. Therefore, these results demonstrate the pharmacological potential of the novel N-acylhydrazone derivative, which acts through the nitric oxide pathway and cytokine signaling, making it a strong candidate as an anti-inflammatory and immunomodulatory agent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA