Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(7): e0235630, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32628739

RESUMO

In several phytophagous hemipterans, behavior appears to be mediated by both visual and chemical cues. For the Asian citrus psyllid (ACP) Diaphorina citri (Hemiptera: Liviidae), olfactometric assays are generally difficult to interpret owing to the low proportion of individuals responding to odors (~30-40%), which compromises the efficiency and reliability of the results of behavioral tests. In the present study, the ACP behavioral response to emitted odors from sweet orange (Citrus sinensis L. Osbeck) flushes in a 4-arm olfactometer using different colors (four white-, two white- and two yellow- on opposite sides, or four yellow-colored fields), and the role of the airflow in the concentration of volatile organic compounds (VOCs) were assessed at two airflows [0.4 and 0.1 L/min (LPM)]. Exposure to 'Pera' sweet orange or clean air in treatments with four yellow-colored-fields increased the response rate of ACP females to the odor sources compared with exposure to 'Pera' sweet orange or clean air in treatments with four white-colored-fields, independently of the odor source and airflow tested. For the assays using two white- and two yellow-colored fields on opposite sides and 0.4 or 0.1 LPM airflow, the residence time of ACP females to odors ('Pera' sweet orange or clean air) was similar or higher in treatments using yellow- than those using white-colored fields. For both assays (VOCs and olfactometric behavioral parameters), the reduction in airflow from 0.4 to 0.1 LPM greatly changed the airborne concentration and ACP behavior. Quantitative chemical analyses revelead that the concentration of most compounds emitted by 'Pera' sweet orange flushes for the headspace using 0.1 LPM airflow were greater than the concentrations measured using 0.4 LPM airflow. Therefore, this treatment design provides an useful tool to assess the ACP behavioral response to the odors from citrus plants, and it can also help in the discrimination of dose-response screenings for VOCs or conspecific insects.


Assuntos
Ar , Comportamento Animal/efeitos dos fármacos , Citrus/metabolismo , Hemípteros/efeitos dos fármacos , Hemípteros/fisiologia , Olfato , Compostos Orgânicos Voláteis/farmacologia , Animais , Cor , Relação Dose-Resposta a Droga , Compostos Orgânicos Voláteis/metabolismo
2.
Sci Rep ; 9(1): 12920, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31501479

RESUMO

The Asian citrus psyllid (ACP) is a vector of a pathogen associated with greening and thus a major problem in citriculture worldwide. Lures are much needed for improving ACP trapping systems for monitoring populations and surveillance. Previously, we have identified acetic acid as a putative sex pheromone and measured formic acid- and propionic acid-elicited robust electroantennographic responses. We have now thoroughly examined in indoor behavioral assays (4-way olfactometer) and field tests the feasibility of these three semiochemicals as potential lures for trapping ACP. Formic acid, acetic acid, and propionic acid at appropriate doses are male-specific attractants and suitable lures for ACP traps, but they do not act synergistically. An acetic acid-based homemade lure, prepared by impregnating the attractant in a polymer, was active for a day. A newly developed slow-release formulation had equal performance but lasted longer, thus leading to an important improvement in ACP trap capture at low population densities.


Assuntos
Ácido Acético , Citrus/parasitologia , Hemípteros , Feromônios , Ácido Acético/química , Animais , Comportamento Animal , Brasil , California , Masculino , Feromônios/química , Compostos Orgânicos Voláteis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA