Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biosci. j. (Online) ; 37: e37094, Jan.-Dec. 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1359488

RESUMO

Sweet sorghum is currently being evaluated throughout the world as a raw material for biofuel production because its stem juices are rich in sugars that can be directly fermented to ethanol. In this work, the fermentative efficiency of three sweet sorghum genotypes was evaluated, aiming at ethanol production, harvested in two seasons, clean and whole stems, and the treatment of the juice and broth with amylolytic enzymes in order to use the present starch to increase the production of ethanol. The experiment was carried out in the 2013/2014 harvest, in the municipality of Jaboticabal, São Paulo, Brasil, located at 21°14'05''S and 48°17'09''W. The experimental design was completely randomized, with sub-subdivided plots and four replications. The primary treatments were the sweet sorghum genotypes (CV147, CV198, and BRS508), the secondary treatments, the type of harvest (whole stems and clean stems); the tertiary the two sampling times (102 and 116 days after sowing - d.a.s) and the quaternary the application of enzymes. In the fermentation process, the yeast PE-2 was used, at the end, the wine was recovered and characterized. Fermentation efficiency and liters of ethanol per ton of sorghum were calculated. The clarification of the juice with enzymatic treatment increases the quality of the fermentation broth and makes it possible to obtain wines with lower levels of RRTs and Brix. Fermentation efficiency is not affected by the genotype; however, it is influenced by the time of harvest and the technological quality of the juice. The use of amylolytic enzymes makes it possible to obtain wines with lower levels of RRTS and Brix. The best period of industrialization was at 102 d.a.s., and the processing of whole stalks resulted in less ethanol production.


Assuntos
Sorghum , Etanol , Biocombustíveis , Fermentação
2.
Braz J Microbiol ; 50(2): 389-394, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30850977

RESUMO

During alcoholic fermentation, most of the substrates supplied to the yeasts are converted into ethanol and carbon dioxide generating energy for cell maintenance. However, some of these substrates end up being diverted to other metabolic pathways generating by-products reducing the yield in ethanol production. Glycerol is the most important by-product quantitatively, and its production during fermentation is associated to the production of ethanol. The present study was carried out at a full scale in an industrial fermentation plant applied to sugar cane industry with bioreactors operated in fed-batch mode. Varying levels of the operating factors feeding time, temperature, and concentration of yeast were used in order to verify the interaction between ethanol and glycerol in the fermentative kinetics and how these factors can be optimized to increase ethanol production with reduced carbon losses during the formation of other products. The results obtained indicated that glycerol production is linearly associated with ethanol production and that this correlation is influenced by the process conditions. Feeding time had a significant effect and was inversely proportional to the glycerol/ethanol production ratio. Therefore, it can be said that a moderate feeding rate can reduce the production of glycerol in relation to the ethanol produced reducing losses and increasing the fermentation yield.


Assuntos
Reatores Biológicos/microbiologia , Etanol/metabolismo , Fermentação/fisiologia , Glicerol/metabolismo , Saccharomyces cerevisiae/metabolismo , Dióxido de Carbono/metabolismo , Glucose/metabolismo , Microbiologia Industrial/métodos
3.
Braz. J. Microbiol. ; 49(4): 872-878, Oct.-Dec. 2018. graf, ilus
Artigo em Inglês | VETINDEX | ID: vti-738176

RESUMO

In order for the use of biological carotenoids to become feasible, it is necessary to have adequate low cost sources and improved methods of cultivation. The aim of this study was to evaluate the effect of supplementation with nitrogen, phosphorus, zinc, and magnesium, on the biomass and carotenoid volumetric production by yeast Rhodotorula rubra L02 using a complex medium (sugarcane juice) and synthetic media (sucrose and maltose) as substrates. The experimental design used for each substrate was randomized in blocks with 16 treatments and 3 repetitions. The treatments were compound for 15 different combinations of nutrients (N; Mg; Zn; P, N + Mg; N + Zn; N + P; Mg + Zn; Mg + P; Zn + P; N + P + Zn; N + P + Mg; N + Zn + Mg; P + Zn + Mg; N + Zn + Mg + P) alone and combined, and a control. The results were submitted to analysis of variance and Tukey test at 5% significance level. Among the treatments evaluated, the highest production of dry biomass, with both maltose and sucrose, was observed for Mg (1.60 g/L and 1.94 g/L, respectively). Additionally, another treatment that stood out in terms of biomass production was the control treatment with maltose (1.54 g/L). After the incubation time, killer activity was not observed since there was no formation of inhibition halo around the L02 yeast.(AU)

4.
Braz. j. microbiol ; 49(4): 872-878, Oct.-Dec. 2018. graf
Artigo em Inglês | LILACS | ID: biblio-974308

RESUMO

ABSTRACT In order for the use of biological carotenoids to become feasible, it is necessary to have adequate low cost sources and improved methods of cultivation. The aim of this study was to evaluate the effect of supplementation with nitrogen, phosphorus, zinc, and magnesium, on the biomass and carotenoid volumetric production by yeast Rhodotorula rubra L02 using a complex medium (sugarcane juice) and synthetic media (sucrose and maltose) as substrates. The experimental design used for each substrate was randomized in blocks with 16 treatments and 3 repetitions. The treatments were compound for 15 different combinations of nutrients (N; Mg; Zn; P, N + Mg; N + Zn; N + P; Mg + Zn; Mg + P; Zn + P; N + P + Zn; N + P + Mg; N + Zn + Mg; P + Zn + Mg; N + Zn + Mg + P) alone and combined, and a control. The results were submitted to analysis of variance and Tukey test at 5% significance level. Among the treatments evaluated, the highest production of dry biomass, with both maltose and sucrose, was observed for Mg (1.60 g/L and 1.94 g/L, respectively). Additionally, another treatment that stood out in terms of biomass production was the control treatment with maltose (1.54 g/L). After the incubation time, killer activity was not observed since there was no formation of inhibition halo around the L02 yeast.


Assuntos
Rhodotorula/metabolismo , Carotenoides/biossíntese , Meios de Cultura/síntese química , Saccharum/microbiologia , Rhodotorula/crescimento & desenvolvimento , Rhodotorula/genética , Biomassa , Meios de Cultura/metabolismo , Meios de Cultura/química , Saccharum/metabolismo , Nitrogênio/metabolismo
5.
Braz J Microbiol ; 49(4): 872-878, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29728338

RESUMO

In order for the use of biological carotenoids to become feasible, it is necessary to have adequate low cost sources and improved methods of cultivation. The aim of this study was to evaluate the effect of supplementation with nitrogen, phosphorus, zinc, and magnesium, on the biomass and carotenoid volumetric production by yeast Rhodotorula rubra L02 using a complex medium (sugarcane juice) and synthetic media (sucrose and maltose) as substrates. The experimental design used for each substrate was randomized in blocks with 16 treatments and 3 repetitions. The treatments were compound for 15 different combinations of nutrients (N; Mg; Zn; P, N+Mg; N+Zn; N+P; Mg+Zn; Mg+P; Zn+P; N+P+Zn; N+P+Mg; N+Zn+Mg; P+Zn+Mg; N+Zn+Mg+P) alone and combined, and a control. The results were submitted to analysis of variance and Tukey test at 5% significance level. Among the treatments evaluated, the highest production of dry biomass, with both maltose and sucrose, was observed for Mg (1.60g/L and 1.94g/L, respectively). Additionally, another treatment that stood out in terms of biomass production was the control treatment with maltose (1.54g/L). After the incubation time, killer activity was not observed since there was no formation of inhibition halo around the L02 yeast.


Assuntos
Carotenoides/biossíntese , Meios de Cultura/síntese química , Rhodotorula/metabolismo , Saccharum/microbiologia , Biomassa , Meios de Cultura/química , Meios de Cultura/metabolismo , Nitrogênio/metabolismo , Rhodotorula/genética , Rhodotorula/crescimento & desenvolvimento , Saccharum/metabolismo
6.
Ci. Rural ; 45(9): 1695-1700, Sept. 2015. tab
Artigo em Português | VETINDEX | ID: vti-27046

RESUMO

Os biocombustíveis apresentam-se com grande importância para suprir a demanda global de energia. São produzidos a partir de biomassa vegetal, emitem menor quantidade de dióxido de carbono e de partículas poluentes ao ambiente quando utilizados e possuem grande vantagem por serem combustíveis renováveis. Entre as matérias-primas com potencial para produção de etanol, cita-se o sorgo sacarino. Objetivou-se comparar o processamento industrial do genótipo de sorgo sacarino CVSW80007 e da cultivar de cana-de-açúcar 'RB966928' para produção de bioetanol em início de safra. As análises realizadas foram: brix; pH, ART, AR, acidez total, ARRT, glicerol, teor alcoolico, viabilidade celular, viabilidade de brotos e brotamentos. Quanto às características químico-tecnológicas, as matérias-primas apresentaram-se aptas ao processamento industrial, com índices superiores para a cana-de-açúcar. O desenvolvimento das fermentações ocorreu de forma adequada para ambas, sendo que o mosto fermentado (vinho), produzido a partir do mosto de cana-de-açúcar, apresentou maior teor alcoolico e rendimento fermentativo.(AU)


Biofuels have great importance to supply the global energy demand. These fuels are produced from plant biomass, emit less carbon dioxide and particulate pollutants to the environment when used and have great advantage of being renewable fuels. Among the raw materials with potential for ethanol production, is cited sweet sorghum. This study aimed to compare industrial processing of genotype sorghum CVSW80007 and the cultivar sugar cane 'RB966928' for bioethanol production in early season. The analyzes performed were: brix, pH, ART, AR, total acidity, ARRT, glycerol, alcohol content, cell viability, shoots viability and buds. Regarding the chemical-technological characteristics, raw materials were suitable for industrial processing, with higher rates for sugar cane. The development of fermentations occurred appropriately for both, and the fermented must (wine) produced from the must of sugar cane had higher alcohol content and fermentation yield.(AU)


Assuntos
Biocombustíveis , Fermentação , Sorghum , Saccharum , Biomassa
7.
Ciênc. rural ; 45(9): 1695-1700, set. 2015. tab
Artigo em Português | LILACS | ID: lil-756421

RESUMO

Os biocombustíveis apresentam-se com grande importância para suprir a demanda global de energia. São produzidos a partir de biomassa vegetal, emitem menor quantidade de dióxido de carbono e de partículas poluentes ao ambiente quando utilizados e possuem grande vantagem por serem combustíveis renováveis. Entre as matérias-primas com potencial para produção de etanol, cita-se o sorgo sacarino. Objetivou-se comparar o processamento industrial do genótipo de sorgo sacarino CVSW80007 e da cultivar de cana-de-açúcar 'RB966928' para produção de bioetanol em início de safra. As análises realizadas foram: brix; pH, ART, AR, acidez total, ARRT, glicerol, teor alcoolico, viabilidade celular, viabilidade de brotos e brotamentos. Quanto às características químico-tecnológicas, as matérias-primas apresentaram-se aptas ao processamento industrial, com índices superiores para a cana-de-açúcar. O desenvolvimento das fermentações ocorreu de forma adequada para ambas, sendo que o mosto fermentado (vinho), produzido a partir do mosto de cana-de-açúcar, apresentou maior teor alcoolico e rendimento fermentativo.

.

Biofuels have great importance to supply the global energy demand. These fuels are produced from plant biomass, emit less carbon dioxide and particulate pollutants to the environment when used and have great advantage of being renewable fuels. Among the raw materials with potential for ethanol production, is cited sweet sorghum. This study aimed to compare industrial processing of genotype sorghum CVSW80007 and the cultivar sugar cane 'RB966928' for bioethanol production in early season. The analyzes performed were: brix, pH, ART, AR, total acidity, ARRT, glycerol, alcohol content, cell viability, shoots viability and buds. Regarding the chemical-technological characteristics, raw materials were suitable for industrial processing, with higher rates for sugar cane. The development of fermentations occurred appropriately for both, and the fermented must (wine) produced from the must of sugar cane had higher alcohol content and fermentation yield.

.

8.
Braz. j. microbiol ; 43(1): 116-125, Jan.-Mar. 2012. ilus, tab
Artigo em Inglês | LILACS | ID: lil-622796

RESUMO

Biosurfactants are bioactive agents that can be produced by many different microorganisms. Among those, special attention is given to yeasts, since they can produce many types of biosurfactants in large scale, using several kinds of substrates, justifying its use for industrial production of those products. For this production to be economically viable, the use of residual carbon sources is recommended. The present study isolated yeasts from soil contaminated with petroleum oil hydrocarbons and assessed their capacity for producing biosurfactants in low cost substrates. From a microbial consortium enriched, seven yeasts were isolated, all showing potential for producing biosurfactants in soybean oil. The isolate LBPF 3, characterized as Candida antarctica, obtained the highest levels of production - with a final production of 13.86 g/L. The isolate LBPF 9, using glycerol carbon source, obtained the highest reduction in surface tension in the growth medium: approximately 43% of reduction after 24 hours of incubation. The products obtained by the isolates presented surfactant activity, which reduced water surface tension to values that varied from 34 mN/m, obtained from the product of isolates LBPF 3 and 16 LBPF 7 (respectively characterized as Candida antarctica and Candida albicans) to 43 mN/m from the isolate LPPF 9, using glycerol as substrate. The assessed isolates all showed potential for the production of biosurfactants in conventional sources of carbon as well as in agroindustrial residue, especially in glycerol.


Assuntos
Candida/isolamento & purificação , Carbono/análise , Glicerol/análise , Hidrocarbonetos/análise , Hidrocarbonetos/isolamento & purificação , Leveduras/isolamento & purificação , Óleo de Soja/análise , Microbiologia do Solo , Técnicas de Química Combinatória , Metodologia como Assunto , Solo
9.
Braz J Microbiol ; 43(1): 116-25, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24031810

RESUMO

Biosurfactants are bioactive agents that can be produced by many different microorganisms. Among those, special attention is given to yeasts, since they can produce many types of biosurfactants in large scale, using several kinds of substrates, justifying its use for industrial production of those products. For this production to be economically viable, the use of residual carbon sources is recommended. The present study isolated yeasts from soil contaminated with petroleum oil hydrocarbons and assessed their capacity for producing biosurfactants in low cost substrates. From a microbial consortium enriched, seven yeasts were isolated, all showing potential for producing biosurfactants in soybean oil. The isolate LBPF 3, characterized as Candida antarctica, obtained the highest levels of production - with a final production of 13.86 g/L. The isolate LBPF 9, using glycerol carbon source, obtained the highest reduction in surface tension in the growth medium: approximately 43% of reduction after 24 hours of incubation. The products obtained by the isolates presented surfactant activity, which reduced water surface tension to values that varied from 34 mN/m, obtained from the product of isolates LBPF 3 and 16 LBPF 7 (respectively characterized as Candida antarctica and Candida albicans) to 43 mN/m from the isolate LPPF 9, using glycerol as substrate. The assessed isolates all showed potential for the production of biosurfactants in conventional sources of carbon as well as in agroindustrial residue, especially in glycerol.

10.
Ciênc. agrotec., (Impr.) ; 33(5): 1379-1384, set.-out. 2009. tab
Artigo em Inglês | LILACS | ID: lil-531554

RESUMO

This work was carried out to evaluate the effects of using corn meal and treating yeasts with sulfuric acid on fermentation microorganisms, wine acidity, ethanol content and cachaça yield and composition. The experiment was arranged in randomized block design, in a 2x3 factorial with five replications. The methods applied in this study are recommended by distilleries. Results showed that the yeast sulfuric acid treatment transferred acidity to the fermenting juice, without any influence on yeast viability, ethanol content and cachaça yield. On the other hand, the acid treatment controlled lactic bacteria in the inoculum. Addition of corn meal increased the concentration of lactic bacteria in the end of the fermentation and increased the levels of higher alcohols in cachaça, especially propyl and isobutyl alcohol.


Avaliou-se o efeito da adição do fubá de milho no mosto de xarope de cana e o tratamento ácido do pé-de-cuba sobre a microbiota do processo fermentativo, acidez do vinho, grau alcoólico, rendimento e composição da cachaça. O delineamento experimental utilizado foi o de blocos casualizados, no esquema fatorial 2x3 e cinco repetições. A metodologia empregada e as análises foram as recomendadas pelo setor aguardenteiro. Os resultados permitiram concluir que a adição do ácido sulfúrico no pé-de-cuba transferiu a acidez para o vinho, não influenciando na viabilidade das leveduras, rendimento e composição da cachaça. Por outro lado, a acidificação do meio controlou as bactérias láticas no pé-de-cuba. A adição do fubá aumentou a concentração de bactérias lácticas ao final do processo fermentativo e dos álcoois homólogos superiores na cachaça, particularmente, os álcoois propílico e isobutílico.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA