Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Total Environ ; 915: 169988, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38211857

RESUMO

Monitoring and understanding of water resources have become essential in designing effective and sustainable management strategies to overcome the growing water quality challenges. In this context, the utilization of unsupervised learning techniques for evaluating environmental tracers has facilitated the exploration of sources and dynamics of groundwater systems through pattern recognition. However, conventional techniques may overlook spatial and temporal non-linearities present in water research data. This paper introduces the adaptation of FlowSOM, a pioneering approach that combines self-organizing maps (SOM) and minimal spanning trees (MST), with the fast-greedy network clustering algorithm to unravel intricate relationships within multivariate water quality datasets. By capturing connections within the data, this ensemble tool enhances clustering and pattern recognition. Applied to the complex water quality context of the hyper-arid transboundary Caplina/Concordia coastal aquifer system (Peru/Chile), the FlowSOM network and clustering yielded compelling results in pattern recognition of the aquifer salinization. Analyzing 143 groundwater samples across eight variables, including major ions, the approach supports the identification of distinct clusters and connections between them. Three primary sources of salinization were identified: river percolation, slow lateral aquitard recharge, and seawater intrusion. The analysis demonstrated the superiority of FlowSOM clustering over traditional techniques in the case study, producing clusters that align more closely with the actual hydrogeochemical pattern. The outcomes broaden the utilization of multivariate analysis in water research, presenting a comprehensive approach to support the understanding of groundwater systems.

2.
Sci Total Environ ; 864: 160933, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36566863

RESUMO

Seawater intrusion is among the world's leading causes of groundwater contamination, as salty water can affect potable water access, food production, and ecosystem functions. To explore such contamination sources, multivariate analysis supported by unsupervised learning tools has been used for decades to aid in water resource pattern recognition, clustering, and water quality data variability characterization. This study proposes a systematic review of these techniques applied for supporting seawater intrusion identification based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement and subsequent bibliometric analysis of 102 coastal hydrogeological studies. The most relevant identified methods, including principal components analysis (PCA), hierarchical clustering analysis, K-means clustering, and self-organizing maps, are explained and applied to a case study. Although 74 % of the studies that applied dimensional reduction methods, such as PCA, associated most of the database variance with the salinization process, 77 % of the studies that applied clustering methods associated at least one water sample cluster with the influence of seawater intrusion. Based on the review and a practical demonstration using the open-source R software platform, recommendations are made regarding data preprocessing, research opportunities, and publishing information necessary to replicate and validate the studies.

3.
Sci Total Environ ; 806(Pt 1): 150386, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34560458

RESUMO

The Caplina/Concordia transboundary coastal aquifer system, located in the Atacama Desert, is the primary source of water supply for domestic use and irrigation for La Yarada-Los Palos (Peru) and Concordia (Chile) agriculture districts, and to a lesser extent, for Tacna province public supply use (Peru). Despite the scarce amount of rainfall (<20 mm/year) in the area and the limited recharge coming from the Andean highlands, this transboundary aquifer system has been overexploited mainly for agriculture since before the 2000s on the Peruvian side. Consequently, this has caused groundwater depletion and seawater intrusion. In this study, comprehensive hydrogeological information was integrated to understand the aquifer system's behavior and the effects to which it has been subjected to groundwater overexploitation. To that end, a 3D hydrogeological framework was developed using the LEAPFROG software and a constant-density groundwater flow model with equivalent heads was generated in FEFLOW software, which was adjusted with Monte Carlo analysis and conventional automated calibration. Finally, eight scenarios, considering various water resource management options proposed by the authority and potential climatic trends (CMIP6), were simulated from 2020 to 2040. The results showed that between 2002 and 2020, the increase in the seawater wedge and the average groundwater level decline were 216 hm3/year and 7 m, respectively. It is expected that the depletion will continue with a groundwater level decline between 5 and 8 m and an increase in the seawater wedge between 1120 hm3/year and 1175 hm3/year for the forecast period. The study concludes that the aquifer system will remain unsustainable for the next 20 years, regardless of the selected scenarios, and suggests that any mitigation measure requires the participation of stakeholders from Peru, Chile, and Bolivia.


Assuntos
Água Subterrânea , Chile , Peru , Água do Mar , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA