Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Med Res ; 55(3): 102983, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492326

RESUMO

Maternal obesity predisposes offspring (F1) to cardiovascular disease. To evaluate basal heart function and ischemia-reperfusion (IR) responses in F1 males and females of obese mothers, female Wistar rats (F0) were fed chow or an obesogenic (MO) diet from weaning through pregnancy and lactation. Non-sibling F1 males and females were weaned to chow at postnatal day (PND) 21 and euthanized at PND 550. Offspring of MO mothers (MOF1) rarely survive beyond PND 650. Hearts were immediately isolated from euthanized F1s and subjected to 30 min ischemia with 20 min reperfusion. Retroperitoneal fat, serum triglycerides, glucose, insulin, and insulin resistance were measured. Baseline left ventricular developed pressure (LVDP) was lower in male and female MOF1 than in controls. After global ischemia, LVDP in control (C) male and female F1 recovered 78 and 83%, respectively, while recovery in MO male and female F1 was significantly lower at 28 and 52%, respectively. Following the IR challenge, MO hearts showed a higher functional susceptibility to reperfusion injury, resulting in lower cardiac reserve than controls in both sexes. Female hearts were more resistant to IR. Retroperitoneal fat was increased in male MOF1 vs. CF1. Circulating triglycerides and insulin resistance were increased in male and female MOF1 vs. CF1. These data show that MO programming reduces F1 cardiac reserve associated with age-related insulin resistance in a sex-specific manner.


Assuntos
Resistência à Insulina , Efeitos Tardios da Exposição Pré-Natal , Humanos , Ratos , Feminino , Gravidez , Masculino , Animais , Idoso , Resistência à Insulina/fisiologia , Ratos Wistar , Obesidade , Insulina , Triglicerídeos , Dieta Hiperlipídica , Isquemia , Reperfusão
2.
Biology (Basel) ; 12(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37759566

RESUMO

We investigated whether maternal obesity affects the hepatic mitochondrial electron transport chain (ETC), sirtuins, and antioxidant enzymes in young (110 postnatal days (PND)) and old (650PND) male and female offspring in a sex- and age-related manner. Female Wistar rats ate a control (C) or high-fat (MO) diet from weaning, through pregnancy and lactation. After weaning, the offspring ate the C diet and were euthanized at 110 and 650PND. The livers were collected for RNA-seq and immunohistochemistry. Male offspring livers had more differentially expressed genes (DEGs) down-regulated by both MO and natural aging than females. C-650PND vs. C-110PND and MO-110PND vs. C-110PND comparisons revealed 1477 DEGs in common for males (premature aging by MO) and 35 DEGs for females. Analysis to identify KEGG pathways enriched from genes in common showed changes in 511 and 3 KEGG pathways in the male and female livers, respectively. Mitochondrial function pathways showed ETC-related gene down-regulation. All ETC complexes, sirtuin2, sirtuin3, sod-1, and catalase, exhibited gene down-regulation and decreased protein expression at young and old ages in MO males vs. C males; meanwhile, MO females down-regulated only at 650PND. Conclusions: MO accelerates the age-associated down-regulation of ETC pathway gene expression in male offspring livers, thereby causing sex-dependent oxidative stress, premature aging, and metabolic dysfunction.

3.
Nutrients ; 15(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36904238

RESUMO

The steroids corticosterone and dehydroepiandrosterone (DHEA) perform multiple life course functions. Rodent life-course circulating corticosterone and DHEA trajectories are unknown. We studied life course basal corticosterone and DHEA in offspring of rats fed protein-restricted (10% protein, R) or control (20% protein, C), pregnancy diet first letter, and/or lactation second letter, producing four offspring groups-CC, RR, CR, and RC. We hypothesize that 1. maternal diet programs are sexually dimorphic, offspring life course steroid concentrations, and 2. an aging-related steroid will fall. Both changes differ with the plastic developmental period offspring experienced R, fetal life or postnatally, pre-weaning. Corticosterone was measured by radioimmunoassay and DHEA by ELISA. Steroid trajectories were evaluated by quadratic analysis. Female corticosterone was higher than male in all groups. Male and female corticosterone were highest in RR, peaked at 450 days, and fell thereafter. DHEA declined with aging in all-male groups. DHEA: corticosterone fell in three male groups but increased in all-female groups with age. In conclusion, life course and sexually dimorphic steroid developmental programming-aging interactions may explain differences in steroid studies at different life stages and between colonies experiencing different early-life programming. These data support our hypotheses of sex and programming influences and aging-related fall in rat life course serum steroids. Life course studies should address developmental programming-aging interactions.


Assuntos
Corticosterona , Dieta com Restrição de Proteínas , Gravidez , Ratos , Animais , Feminino , Masculino , Ratos Wistar , Envelhecimento/metabolismo , Desidroepiandrosterona
4.
Antioxidants (Basel) ; 11(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36290594

RESUMO

Maternal obesity (MO) causes maternal and fetal oxidative stress (OS) and metabolic dysfunction. We investigated whether supplementing obese mothers with resveratrol improves maternal metabolic alterations and reduces OS in the placenta and maternal and fetal liver. From weaning through pregnancy female Wistar rats ate chow (C) or a high-fat diet (MO). One month before mating until 19 days' gestation (dG), half the rats received 20 mg resveratrol/kg/d orally (Cres and MOres). At 19dG, maternal body weight, retroperitoneal fat adipocyte size, metabolic parameters, and OS biomarkers in the placenta and liver were determined. MO mothers showed higher body weight, triglycerides and leptin serum concentrations, insulin resistance (IR), decreased small and increased large adipocytes, liver fat accumulation, and hepatic upregulation of genes related to IR and inflammatory processes. Placenta, maternal and fetal liver OS biomarkers were augmented in MO. MOres mothers showed more small and fewer large adipocytes, lower triglycerides serum concentrations, IR and liver fat accumulation, downregulation of genes related to IR and inflammatory processes, and lowered OS in mothers, placentas, and female fetal liver. Maternal resveratrol supplementation in obese rats improves maternal metabolism and reduces placental and liver OS of mothers and fetuses in a sex-dependent manner.

5.
Nutrients ; 13(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34959795

RESUMO

We investigated if supplementing obese mothers (MO) with docosahexaenoic acid (DHA) improves milk long-chain polyunsaturated fatty acid (LCPUFA) composition and offspring anxiety behavior. From weaning throughout pregnancy and lactation, female Wistar rats ate chow (C) or a high-fat diet (MO). One month before mating and through lactation, half the mothers received 400 mg DHA kg-1 d-1 orally (C+DHA or MO+DHA). Offspring ate C after weaning. Maternal weight, total body fat, milk hormones, and milk nutrient composition were determined. Pups' milk nutrient intake was evaluated, and behavioral anxiety tests were conducted. MO exhibited increased weight and total fat, and higher milk corticosterone, leptin, linoleic, and arachidonic acid (AA) concentrations, and less DHA content. MO male and female offspring had higher ω-6/ ω-3 milk consumption ratios. In the elevated plus maze, female but not male MO offspring exhibited more anxiety. MO+DHA mothers exhibited lower weight, total fat, milk leptin, and AA concentrations, and enhanced milk DHA. MO+DHA offspring had a lower ω-6/ω-3 milk intake ratio and reduced anxiety vs. MO. DHA content was greater in C+DHA milk vs. C. Supplementing MO mothers with DHA improves milk composition, especially LCPUFA content and ω-6/ω-3 ratio reducing offspring anxiety in a sex-dependent manner.


Assuntos
Animais Recém-Nascidos/psicologia , Comportamento Animal/efeitos dos fármacos , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/administração & dosagem , Leite/química , Animais , Ansiedade/prevenção & controle , Ingestão de Alimentos/psicologia , Ácidos Graxos Ômega-3/análise , Ácidos Graxos Ômega-6/análise , Ácidos Graxos Insaturados/análise , Feminino , Lactação , Masculino , Fenômenos Fisiológicos da Nutrição Materna/efeitos dos fármacos , Obesidade , Gravidez , Ratos , Ratos Wistar , Fatores Sexuais
6.
Exp Gerontol ; 154: 111511, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34371097

RESUMO

Maternal obesity (MO) leads to offspring metabolic problems. The mechanisms involved are multifactorial. The small intestine plays an important role in the absorption of nutrients and is modified as we age. Few studies have explored MO programming effects on offspring (F1) small intestine morphology. The aim of this study was to investigate MO effects on old adult F1 intestinal morphology, and whether any F1 intestinal changes due to MO were modified by maternal resveratrol supplementation. From weaning throughout pregnancy and lactation, female Wistar rats (F0) ate standard chow (controls, C: 5%-fat) or high-fat diet (MO: 25%-fat). One month before mating at postnatal day (PND) 120 through lactation half of each group received 20 mg/kg/day of resveratrol orally (Cres or MOres). After weaning F1 were fed with chow diet until the end of the study at PND 650. Body weight, percent of fat, glucose, cholesterol and triglyceride serum concentrations were determined. F1 small intestinal samples were collected for histological analysis. Male F1 body weight was higher in MO and MOres compared with C and Cres. Female F1 body weight and percent of fat was higher in MO than C and MOres. Triglyceride concentrations were higher in MO and MOres male F1 compared with C and Cres. There were no differences among groups in female triglyceride concentrations. Male F1 duodenal villus height was smaller in MO compared with MOres. Female F1 duodenal and jejunal crypt depth was smaller in MO compared with C and was greater compared with MOres. Female F1 villus height in jejunum was greater in MO compared with MOres. In conclusion, exposure to the developmental challenge of MO changed the aged F1 intestinal morphological and metabolic profiles. Maternal resveratrol supplementation ameliorated these effects in an F1 sex dependent manner.


Assuntos
Obesidade Materna , Efeitos Tardios da Exposição Pré-Natal , Animais , Dieta Hiperlipídica , Suplementos Nutricionais , Feminino , Humanos , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Gravidez , Ratos , Ratos Wistar , Resveratrol/farmacologia
7.
J Physiol ; 599(18): 4309-4320, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34387378

RESUMO

At the molecular level, cellular ageing involves changes in multiple gene pathways. Cellular senescence is both an important initiator and a consequence of natural ageing. Senescence results in changes in multiple cellular mechanisms that result in a natural decrease in cell cycle activity. Liver senescence changes impair hepatic function. Given the well-established sexual dimorphism in ageing, we hypothesized that the natural hepatic ageing process is driven by sex-dependent gene mechanisms. We studied our well-characterized normal, chow-fed rat ageing model, lifespan ∼850 days, in which we have reported ageing of metabolism, reproduction and endocrine function. We performed liver RNA-seq on males and females at 110 and 650 days to determine changes in the cell cycle and cellular senescence signalling pathways. We found that natural liver ageing shows sexual dimorphism in these pathways. RNA-seq revealed more male (3967) than female (283) differentially expressed genes between 110 and 650 days. Cell cycle pathway signalling changes in males showed decreased protein and expression of key genes (Cdk2, Cdk4, Cycd and PCNA) and increased expression ofp57 at 650 vs 110 days. In females, protein and gene expression of cell growth regulators, e.g. p15 and p21, which inhibit cell cycle G1 progression, were increased. The cell senescence pathway also showed sexual dimorphism. Igfbp3, mTOR and p62 gene and protein expression decreased in males while those ofTgfb3 increased in females. Understanding the involvement of cell cycling and cellular senescence pathways in natural ageing will advance evaluation of mechanisms associated with altered ageing and frailty trajectories. KEY POINTS: In rats RNA-seq analysis showed sexual dimorphism in gene expression across the life-course between 110 and 650 days of life. Fourteen times more liver transcriptome and six times more pathway changes were observed in males compared with females. Significant changes were observed in several signalling pathways during ageing. Bioinformatic analysis were focused on changes in genes and protein products related to cell cycle and cellular senescence pathways. Males showed decreased protein product and expression of the key genes Cdk2 and Cdk4 responsible for cell cycle progression while females increased protein product and expression of p21 and p15, key genes responsible for cell cycle arrest. In conclusion, normative rat hepatic ageing involves changes in cellular pathways that control cell cycle arrest but through changes in different genes in males and females. These findings identify mechanisms that underlie the well-established sexual dimorphism in ageing.


Assuntos
Caracteres Sexuais , Transdução de Sinais , Animais , Ciclo Celular , Senescência Celular , Feminino , Fígado , Masculino , Ratos , Transcriptoma
8.
Nutr Rev ; 78(Suppl 2): 32-47, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33196093

RESUMO

Lactation is a critical period during which maternal nutritional and environmental challenges affect milk composition and, therefore, organ differentiation, structure, and function in offspring during the early postnatal period. Evidence to date shows that lactation is a vulnerable time during which transient insults can have lasting effects, resulting in altered health outcomes in offspring in adult life. Despite the importance of the developmental programming that occurs during this plastic period of neonatal life, there are few comprehensive reviews of the multiple challenges-especially to the dam-during lactation. This review presents milk data from rodent studies involving maternal nutritional challenges and offspring outcome data from studies involving maternal manipulations during lactation. Among the topics addressed are maternal nutritional challenges and the effects of litter size and artificial rearing on offspring metabolism and neural and endocrine outcomes. The lactation period is an opportunity to correct certain functional deficits resulting from prenatal challenges to the fetus, but, if not personalized, can also lead to undesirable outcomes related to catch up-growth and overnutrition.


Assuntos
Lactação/fisiologia , Leite/química , Animais , Animais Recém-Nascidos , Aleitamento Materno , Feminino , Humanos , Lactente , Recém-Nascido , Gravidez , Roedores/crescimento & desenvolvimento , Roedores/fisiologia
9.
Int J Obes (Lond) ; 44(12): 2430-2435, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32546858

RESUMO

There are several different methods available for the determination of body fat composition. Two current methods requiring special instrumentation are magnetic resonance imaging (MRI) and dual energy x-ray absorptiometry (DXA). The use of these techniques is very limited despite desirable properties, due to their high costs. Dissection of all fat depots (DF) requires no special instrumentation and allows examination and evaluation of each fat depot in more detail. MRI, DXA, and DF each have their unique advantages and disadvantages when they are applied to animal models. Most studies have determined body fat in young animals, and few studies have been performed in aging models. The aim of this study was to compare MRI, DXA, and DF data in offspring (F1) of mothers fed with control and high-fat diet. We studied rats that varied by age, sex, and maternal diet. The relationships between the three methods were determined via linear regression methods (using log-transformed values to accommodate relativity in the relationships), incorporating when useful age, sex, or diet of the animal. We conclude that the three methods are comparable for measuring body fat, but that direct equivalence gets masked by age, sex, and sometimes dietary group. Depending on the equipment available, the budget of the laboratory, and the nature of the research questions, different approaches may often suggest themselves as the best one.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Composição Corporal , Absorciometria de Fóton , Animais , Dieta Hiperlipídica , Dissecação , Feminino , Imageamento por Ressonância Magnética , Masculino , Ratos , Ratos Wistar
10.
J Gerontol A Biol Sci Med Sci ; 75(12): 2304-2307, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32154556

RESUMO

Programming of offspring life-course health by maternal nutrition and stress are well studied. At postnatal day 850, we evaluated male and female steroid levels and metabolism in aged offspring of primigravid sister rats bred at 70, 90, 150, or 300 days' life. At 850 days life, male offspring corticosterone was similar regardless of maternal age. Female corticosterone was highest in offspring of 70- and 300-day mothers. Serum dehydroepiandrosterone:corticosterone was lowest in both sexes of offspring of 70- and 300-day mothers. Male and female fat depots were smaller in offspring of 150- than 70- and 90-day mothers. Insulin, glucose, and homeostatic model assessment were similar in all male offspring but higher in female offspring of 70-day mothers than other ages. We conclude, maternal age affects offspring aging in an offspring sex-dependent manner and merits consideration in designing and interpreting programming studies.


Assuntos
Envelhecimento/metabolismo , Fertilização , Idade Materna , Esteroides/sangue , Animais , Glicemia/análise , Feminino , Desenvolvimento Fetal , Insulina/sangue , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Fenótipo , Gravidez , Ratos , Ratos Wistar , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA