Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Appl Genet ; 57(2): 215-24, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26496990

RESUMO

Rapid growth in broilers is associated with susceptibility to metabolic disorders such as pulmonary hypertension syndrome (ascites) and sudden death. This study describes a genome search for QTL associated with relative weight of cardio respiratory and metabolically important organs (heart, lungs, liver and gizzard), and hematocrit value in a Brazilian broiler-layer cross. QTL with similar or different effects across sexes were investigated. At 42 days of age after fasted for 6 h, the F2 chickens were weighed and slaughtered. Weights and percentages of the weight relative to BW42 of gizzard, heart, lungs, liver and hematocrit were used in the QTL search. Parental, F1 and F2 individuals were genotyped with 128 genetic markers (127 microsatellites and 1 SNP) covering 22 linkage groups. QTL mapping analyses were carried out using mixed models. A total of 11 genome-wide significant QTL and five suggestive linkages were mapped. Thus, genome-wide significant QTL with similar effects across sexes were mapped to GGA2, 4 and 14 for heart weight, and to GGA2, 8 and 12 for gizzard %. Additionally, five genome-wide significant QTL with different effects across sexes were mapped to GGA 8, 19 and 26 for heart weight; GGA26 for heart % and GGA3 for hematocrit value. Five QTL were detected in chromosomal regions where QTL for similar traits were previously mapped in other F2 chicken populations. Seven novel genome-wide significant QTL are reported here, and 21 positional candidate genes in QTL regions were identified.


Assuntos
Galinhas/genética , Hematócrito , Tamanho do Órgão/genética , Locos de Características Quantitativas , Animais , Feminino , Ligação Genética , Marcadores Genéticos , Genótipo , Masculino , Repetições de Microssatélites , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único
2.
Genet Mol Res ; 14(4): 17544-54, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26782399

RESUMO

Selection among broilers for performance traits is resulting in locomotion problems and bone disorders, once skeletal structure is not strong enough to support body weight in broilers with high growth rates. In this study, genetic parameters were estimated for body weight at 42 days of age (BW42), and tibia traits (length, width, and weight) in a population of broiler chickens. Quantitative trait loci (QTL) were identified for tibia traits to expand our knowledge of the genetic architecture of the broiler population. Genetic correlations ranged from 0.56 ± 0.18 (between tibia length and BW42) to 0.89 ± 0.06 (between tibia width and weight), suggesting that these traits are either controlled by pleiotropic genes or by genes that are in linkage disequilibrium. For QTL mapping, the genome was scanned with 127 microsatellites, representing a coverage of 2630 cM. Eight QTL were mapped on Gallus gallus chromosomes (GGA): GGA1, GGA4, GGA6, GGA13, and GGA24. The QTL regions for tibia length and weight were mapped on GGA1, between LEI0079 and MCW145 markers. The gene DACH1 is located in this region; this gene acts to form the apical ectodermal ridge, responsible for limb development. Body weight at 42 days of age was included in the model as a covariate for selection effect of bone traits. Two QTL were found for tibia weight on GGA2 and GGA4, and one for tibia width on GGA3. Information originating from these QTL will assist in the search for candidate genes for these bone traits in future studies.


Assuntos
Galinhas/genética , Mapeamento Cromossômico , Locos de Características Quantitativas/genética , Tíbia/crescimento & desenvolvimento , Animais , Cruzamento , Galinhas/crescimento & desenvolvimento , Ligação Genética , Genótipo , Fenótipo
3.
Anim Genet ; 43(5): 570-6, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22497237

RESUMO

Major objectives of the poultry industry are to increase meat production and to reduce carcass fatness, mainly abdominal fat. Information on growth performance and carcass composition are important for the selection of leaner meat chickens. To enhance our understanding of the genetic architecture underlying the chemical composition of chicken carcasses, an F(2) population developed from a broiler × layer cross was used to map quantitative trait loci (QTL) affecting protein, fat, water and ash contents in chicken carcasses. Two genetic models were applied in the QTL analysis: the line-cross and the half-sib models, both using the regression interval mapping method. Six significant and five suggestive QTL were mapped in the line-cross analysis, and four significant and six suggestive QTL were mapped in the half-sib analysis. A total of eleven QTL were mapped for fat (ether extract), five for protein, four for ash and one for water contents in the carcass using both analyses. No study to date has reported QTL for carcass chemical composition in chickens. Some QTL mapped here for carcass fat content match, as expected, QTL regions previously associated with abdominal fat in the same or in different populations, and novel QTL for protein, ash and water contents in the carcass are presented here. The results described here also reinforce the need for fine mapping and to perform multi-trait analyses to better understand the genetic architecture of these traits.


Assuntos
Galinhas/crescimento & desenvolvimento , Galinhas/genética , Carne/análise , Locos de Características Quantitativas , Animais , Composição Corporal , Mapeamento Cromossômico , Feminino , Masculino , Fenótipo
4.
Genet Mol Res ; 10(3): 1337-44, 2011 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-21751160

RESUMO

Studies estimating genetic parameters for reproductive traits in chickens can be useful for understanding and improvement of their genetic architecture. A total of 1276 observations of fertility (FERT), hatchability of fertile eggs (HFE) and hatchability of total eggs (HTE) were used to estimate the genetic and phenotypic parameters of 467 females from an F2 population generated by reciprocal crossing between a broiler line and a layer line, which were developed through a poultry genetics breeding program, maintained by Embrapa Swine and Poultry, Concordia, Santa Catarina, Brazil. Estimates of heritability and genetic and phenotypic correlations were obtained using restricted maximum likelihood calculations under the two-trait animal model, including the fixed effect of group (hatching of birds from the same genetic group) and the random additive genetic and residual effects. The mean percentages for FERT, HFE and HTE were 87.91 ± 19.77, 80.07 ± 26.81 and 70.67 ± 28.55%, respectively. The highest heritability estimate (h(2)) was 0.28 ± 0.04 for HTE. Genetic correlations for FERT with HFE (0.43 ± 0.17), HFE with HTE (0.98 ± 0.02) and FERT with HTE (0.69 ± 0.10) were positive and significant. Individuals with high breeding value for HTE would have high breeding values for HFE and FERT because of the high genetic association between them. These results suggest that HTE should be included as a selection criterion in genetic breeding programs to improve the reproductive performance of chickens, because HTE had the highest heritability estimate and high genetic correlation with FERT and HFE, and it is the easiest to measure.


Assuntos
Galinhas/genética , Característica Quantitativa Herdável , Animais , Cruzamento , Feminino , Fertilidade/genética , Masculino , Estatística como Assunto
5.
Anim Genet ; 40(5): 729-36, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19466938

RESUMO

An F(2) population established by crossing a broiler male line and a layer line was used to map quantitative trait loci (QTL) affecting abdominal fat weight, abdominal fat percentage and serum cholesterol and triglyceride concentrations. Two genetic models, the line-cross and the half-sib, were applied in the QTL analysis, both using the regression interval method. Three significant QTL and four suggestive QTL were mapped in the line-cross analysis and four significant and four suggestive QTL were mapped in the half-sib analysis. A total of five QTL were mapped for abdominal fat weight, six for abdominal fat percentage and four for triglyceride concentration in both analyses. New QTL associated with serum triglyceride concentration were mapped on GGA5, GGA23 and GG27. QTL mapped between markers LEI0029 and ADL0371 on GGA3 for abdominal fat percentage and abdominal fat weight and a suggestive QTL on GGA12 for abdominal fat percentage showed significant parent-of-origin effects. Some QTL mapped here match QTL regions mapped in previous studies using different populations, suggesting good candidate regions for fine-mapping and candidate gene searches.


Assuntos
Adiposidade/genética , Galinhas/genética , Fenótipo , Locos de Características Quantitativas/genética , Abdome/anatomia & histologia , Animais , Mapeamento Cromossômico/veterinária , Cruzamentos Genéticos , Genótipo , Triglicerídeos/sangue
6.
Anim Genet ; 40(2): 200-8, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19170675

RESUMO

An F(2) resource population, derived from a broiler x layer cross, was used to map quantitative trait loci (QTL) for body weights at days 1, 35 and 41, weight gain, feed intake, feed efficiency from 35 to 41 days and intestinal length. Up to 577 F(2) chickens were genotyped with 103 genetic markers covering 21 linkage groups. A preliminary QTL mapping report using this same population focused exclusively on GGA1. Regression methods were applied to line-cross and half-sib models for QTL interval mapping. Under the line-cross model, eight QTL were detected for body weight at 35 days (GGA2, 3 and 4), body weight at 41 days (GGA2, 3, 4 and 10) and intestine length (GGA4). Under the half-sib model, using sire as common parent, five QTL were detected for body weight at day 1 (GGA3 and 18), body weight at 35 days (GGA2 and 3) and body weight at 41 days (GGA3). When dam was used as common parent, seven QTL were mapped for body weight at day 1 (GGA2), body weight at day 35 (GGA2, 3 and 4) and body weight at day 41 (GGA2, 3 and 4). Growth differences in chicken lines appear to be controlled by a chronological change in a limited number of chromosomal regions.


Assuntos
Galinhas/crescimento & desenvolvimento , Galinhas/genética , Ração Animal , Animais , Peso Corporal/genética , Galinhas/anatomia & histologia , Mapeamento Cromossômico , Ingestão de Alimentos/genética , Feminino , Genótipo , Hibridização Genética , Intestinos/anatomia & histologia , Masculino , Locos de Características Quantitativas , Aumento de Peso/genética
7.
Anim Genet ; 37(2): 95-100, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16573522

RESUMO

With the objective of mapping quantitative trait loci (QTLs) for performance and carcass traits, an F2 chicken population was developed by crossing broiler and layer lines. A total of 2063 F2 chicks in 21 full-sib families were reared as broilers and slaughtered at 42 days of age. Seventeen performance and carcass traits were measured. Parental F(0) and F1 individuals were genotyped with 80 microsatellites from chicken chromosome 1 to select informative markers. Thirty-three informative markers were used for selective genotyping of F2 individuals with extreme phenotypes for body weight at 42 days of age (BW42). Based on the regions identified by selective genotyping, seven full-sib families (649 F2 chicks) were genotyped with 26 markers. Quantitative trait loci affecting body weight, feed intake, carcass weight, drums and thighs weight and abdominal fat weight were mapped to regions already identified in other populations. Quantitative trait loci for weights of gizzard, liver, lungs, heart and feet, as well as length of intestine, not previously described in the literature were mapped on chromosome 1. This F2 population can be used to identify novel QTLs and constitutes a new resource for studies of genes related to growth and carcass traits in poultry.


Assuntos
Galinhas/genética , Cromossomos , Locos de Características Quantitativas , Animais , Brasil , Galinhas/anatomia & histologia , Galinhas/crescimento & desenvolvimento , Mapeamento Cromossômico , Cruzamentos Genéticos , Feminino , Marcadores Genéticos , Genótipo , Masculino , Repetições de Microssatélites
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA