Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 55(10): 1441-54, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26901160

RESUMO

Intrinsic disorder is at the center of biochemical regulation and is particularly overrepresented among the often multifunctional viral proteins. Replication and transcription of the respiratory syncytial virus (RSV) relies on a RNA polymerase complex with a phosphoprotein cofactor P as the structural scaffold, which consists of a four-helix bundle tetramerization domain flanked by two domains predicted to be intrinsically disordered. Because intrinsic disorder cannot be reduced to a defined atomic structure, we tackled the experimental dissection of the disorder-order transitions of P by a domain fragmentation approach. P remains as a tetramer above 70 °C but shows a pronounced reversible secondary structure transition between 10 and 60 °C. While the N-terminal module behaves as a random coil-like IDP in a manner independent of tetramerization, the isolated C-terminal module displays a cooperative and reversible metastable transition. When linked to the tetramerization domain, the C-terminal module becomes markedly more structured and stable, with strong ANS binding. Therefore, the tertiary structure in the C-terminal module is not compact, conferring "late" molten globule-like IDP properties, stabilized by interactions favored by tetramerization. The presence of a folded structure highly sensitive to temperature, reversibly and almost instantly formed and broken, suggests a temperature sensing activity. The marginal stability allows for exposure of protein binding sites, offering a thermodynamic and kinetic fine-tuning in order-disorder transitions, essential for the assembly and function of the RSV RNA polymerase complex.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo , Fosfoproteínas/metabolismo , Vírus Sincicial Respiratório Humano/metabolismo , RNA Polimerases Dirigidas por DNA/química , Humanos , Proteínas Associadas à Matriz Nuclear/química , Fosfoproteínas/química , Ligação Proteica/fisiologia , Vírus Sincicial Respiratório Humano/química , Proteínas Virais/química , Proteínas Virais/metabolismo
2.
PLoS One ; 8(9): e72760, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086265

RESUMO

Intrinsic disorder is abundant in viral genomes and provides conformational plasticity to its protein products. In order to gain insight into its structure-function relationships, we carried out a comprehensive analysis of structural propensities within the intrinsically disordered N-terminal domain from the human papillomavirus type-16 E7 oncoprotein (E7N). Two E7N segments located within the conserved CR1 and CR2 regions present transient α-helix structure. The helix in the CR1 region spans residues L8 to L13 and overlaps with the E2F mimic linear motif. The second helix, located within the highly acidic CR2 region, presents a pH-dependent structural transition. At neutral pH the helix spans residues P17 to N29, which include the retinoblastoma tumor suppressor LxCxE binding motif (residues 21-29), while the acidic CKII-PEST region spanning residues E33 to I38 populates polyproline type II (PII) structure. At pH 5.0, the CR2 helix propagates up to residue I38 at the expense of loss of PII due to charge neutralization of acidic residues. Using truncated forms of HPV-16 E7, we confirmed that pH-induced changes in α-helix content are governed by the intrinsically disordered E7N domain. Interestingly, while at both pH the region encompassing the LxCxE motif adopts α-helical structure, the isolated 21-29 fragment including this stretch is unable to populate an α-helix even at high TFE concentrations. Thus, the E7N domain can populate dynamic but discrete structural ensembles by sampling α-helix-coil-PII-ß-sheet structures. This high plasticity may modulate the exposure of linear binding motifs responsible for its multi-target binding properties, leading to interference with key cell signaling pathways and eventually to cellular transformation by the virus.


Assuntos
Transformação Celular Neoplásica , Proteínas Intrinsicamente Desordenadas/química , Proteínas Oncogênicas Virais/química , Papillomaviridae/química , Sequência de Aminoácidos , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Espectrofotometria Ultravioleta
3.
Biochemistry ; 52(39): 6779-89, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23984912

RESUMO

Human respiratory syncytial virus (hRSV) is a worldwide distributed pathogen that causes respiratory disease mostly in infants and the elderly. The M2-1 protein of hRSV functions as a transcription antiterminator and partakes in virus particle budding. It is present only in Pneumovirinae, namely, Pneumovirus (RSV) and Metapneumovirus, making it an interesting target for specific antivirals. hRSV M2-1 is a tight tetramer bearing a Cys3-His1 zinc-binding motif, present in Ebola VP30 protein and some eukaryotic proteins, whose integrity was shown to be essential for protein function but without a biochemical mechanistic basis. We showed that removal of the zinc atom causes dissociation to a monomeric apo-M2-1 species. Surprisingly, the secondary structure and stability of the apo-monomer is indistinguishable from that of the M2-1 tetramer. Dissociation reported by a highly sensitive tryptophan residue is much increased at pH 5.0 compared to pH 7.0, suggesting a histidine protonation cooperating in zinc removal. The monomeric apo form binds RNA at least as well as the tetramer, and this interaction is outcompeted by the phosphoprotein P, the RNA polymerase cofactor. The role of zinc goes beyond stabilization of local structure, finely tuning dissociation to a fully folded and binding competent monomer. Removal of zinc is equivalent to the disruption of the motif by mutation, only that the former is potentially reversible in the cellular context. Thus, this process could be triggered by a natural chelator such as glutathione or thioneins, where reversibility strongly suggests a modulatory role in the participation of M2-1 in the assembly of the polymerase complex or in virion budding.


Assuntos
Cisteína/química , Histidina/química , Vírus Sincicial Respiratório Humano/química , Proteínas Virais/química , Zinco/metabolismo , Motivos de Aminoácidos , Cisteína/metabolismo , Histidina/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Estrutura Quaternária de Proteína , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/metabolismo , Proteínas Virais/metabolismo , Zinco/química , Zinco/deficiência
4.
J Biol Chem ; 288(26): 18923-38, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23632018

RESUMO

The retinoblastoma tumor suppressor (Rb) controls the proliferation, differentiation, and survival of cells in most eukaryotes with a role in the fate of stem cells. Its inactivation by mutation or oncogenic viruses is required for cellular transformation and eventually carcinogenesis. The high conservation of the Rb cyclin fold prompted us to investigate the link between conformational stability and ligand binding properties of the RbAB pocket domain. RbAB unfolding presents a three-state transition involving cooperative secondary and tertiary structure changes and a partially folded intermediate that can oligomerize. The first transition corresponds to unfolding of the metastable B subdomain containing the binding site for the LXCXE motif present in cellular and viral targets, and the second transition corresponds to the stable A subdomain. The low thermodynamic stability of RbAB translates into a propensity to rapidly oligomerize and aggregate at 37 °C (T50 = 28 min) that is suppressed by human papillomavirus E7 and E2F peptide ligands, suggesting that Rb is likely stabilized in vivo through binding to target proteins. We propose that marginal stability and associated oligomerization may be conserved for function as a "hub" protein, allowing the formation of multiprotein complexes, which could constitute a robust mechanism to retain its cell cycle regulatory role throughout evolution. Decreased stability and oligomerization are shared with the p53 tumor suppressor, suggesting a link between folding and function in these two essential cell regulators that are inactivated in most cancers and operate within multitarget signaling pathways.


Assuntos
Ciclinas/química , Dobramento de Proteína , Proteína do Retinoblastoma/química , Sítios de Ligação , Diferenciação Celular , Dicroísmo Circular , Proteínas de Ligação a DNA/química , Fatores de Transcrição E2F/química , Humanos , Ligantes , Modelos Moleculares , Proteínas Oncogênicas Virais/química , Proteínas E7 de Papillomavirus/química , Ligação Proteica , Estrutura Terciária de Proteína , Transdução de Sinais , Temperatura , Proteína Supressora de Tumor p53/química
5.
Methods Mol Biol ; 895: 387-404, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22760329

RESUMO

Circular dichroism (CD) spectroscopy is a simple and powerful technique, which allows for the assessment of the conformational properties of a protein or protein domain. Intrinsically disordered proteins (IDPs), as discussed throughout this series, differ from random coil polypeptides in that different regions present specific conformational preferences, exhibiting dynamic secondary structure content [1]. These dynamic secondary structure elements can be stabilized or perturbed by different chemical (solvent, ionic strength, pH) or physical (temperature) agents, by posttranslational modifications, and by ligands. This information is important for defining ID nature. As IDPs present dynamic conformations, circular dichroism measurements (and other approaches as well) should be carried out not as single spectra performed in unique conditions, but instead changing the chemical conditions and observing the behavior, as part of the determination of the ID nature.In this chapter, we present the basic methodology for performing Far-UV CD measurements on a protein of interest and for identifying and characterizing intrinsically disordered regions, and several protocols for the analysis of residual secondary structure present in the protein under study. These techniques are straightforward to perform; they require minimal training and can be preliminary to more complex methodologies such as NMR.


Assuntos
Dicroísmo Circular , Proteínas E7 de Papillomavirus/química , Algoritmos , Modelos Moleculares , Peptídeos/química , Fosforilação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA