Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Genome Biol Evol ; 16(7)2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38752399

RESUMO

Alternative splicing is the process of generating different mRNAs from the same primary transcript, which contributes to increase the transcriptome and proteome diversity. Abnormal splicing has been associated with the development of several diseases including cancer. Given that mutations and abnormal levels of the RIPK2 transcript and RIP-2 protein are frequent in tumors, and that RIP-2 modulates immune and inflammatory responses, we investigated alternative splicing events that result in partial deletions of the kinase domain at the N-terminus of RIP-2. We also investigated the structure and expression of the RIPK2 truncated variants and isoforms in different environments. In addition, we searched data throughout Supraprimates evolution that could support the biological importance of RIPK2 alternatively spliced products. We observed that human variants and isoforms were differentially regulated following temperature stress, and that the truncated transcript was more expressed than the long transcript in tumor samples. The inverse was found for the longer protein isoform. The truncated variant was also detected in chimpanzee, gorilla, hare, pika, mouse, rat, and tree shrew. The fact that the same variant has been preserved in mammals with divergence times up to 70 million years raises the hypothesis that it may have a functional significance.


Assuntos
Processamento Alternativo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor , Animais , Humanos , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Evolução Molecular , Isoformas de Proteínas/genética , Camundongos , Neoplasias/genética , Ratos
2.
Lasers Med Sci ; 38(1): 251, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37919479

RESUMO

Despite significant efforts to control cancer progression and to improve oncology treatment outcomes, recurrence and tumor resistance are frequently observed in cancer patients. These problems are partly related to the presence of cancer stem cells (CSCs). Photodynamic therapy (PDT) has been developed as a therapeutic approach for solid tumors; however, it remains unclear how this therapy can affect CSCs. In this review, we focus on the effects of PDT on CSCs and the possible changes in the CSC population after PDT exposure. Tumor response to PDT varies according to the photosensitizer and light parameters employed, but most studies have reported the successful elimination of CSCs after PDT. However, some studies have reported that CSCs were more resistant to PDT than non-CSCs due to the increased efflux of photosensitizer molecules and the action of autophagy. Additionally, using different PDT approaches to target the CSCs resulted in increased sensitivity, reduction of sphere formation, invasiveness, stem cell phenotype, and improved response to chemotherapy. Lastly, although mainly limited to in vitro studies, PDT, combined with targeted therapies and/or chemotherapy, could successfully target CSCs in different solid tumors and promote the reduction of stemness, suggesting a promising therapeutic approach requiring evaluation in robust pre-clinical studies.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fotoquimioterapia/métodos , Células-Tronco Neoplásicas
3.
Sci Rep ; 11(1): 22314, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34785721

RESUMO

The comparison of chemical and histopathological data obtained from the analysis of excised tumor fragments oral squamous cell carcinoma (OSCC) with the demographic and clinical evolution data is an effective strategy scarcely explored in OSCC studies. The aim was to analyze OSCC tissues for protein expression of enzymes related to oxidative stress and DNA repair and trace elements as candidates as markers of tumor aggressiveness and prognosis. Tumor fragments from 78 OSCC patients that had undergone ablative surgery were qualitatively analyzed by synchrotron micro-X-ray fluorescence for trace elements. Protein expression of SOD-1, Trx, Ref-1 and OGG1/2 was performed by immunohistochemistry. Sociodemographic, clinical, and histopathological data were obtained from 4-year follow-up records. Disease relapse was highest in patients with the presence of chlorine and chromium and lowest in those with tumors with high OGG1/2 expression. High expression of SOD-1, Trx, and Ref-1 was determinant of the larger tumor. Presence of trace elements can be markers of disease prognosis. High expression of enzymes related to oxidative stress or to DNA repair can be either harmful by stimulating tumor growth or beneficial by diminishing relapse rates. Interference on these players may bring novel strategies for the therapeutic management of OSCC patients.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas , Cloro/metabolismo , Cromo/metabolismo , Reparo do DNA , DNA de Neoplasias/metabolismo , Neoplasias Bucais , Proteínas de Neoplasias/metabolismo , Estresse Oxidativo , Idoso , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Prognóstico , Estudos Retrospectivos
4.
BMC Med Genomics ; 11(1): 73, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30157864

RESUMO

BACKGROUND: Lymph node metastasis is one of the most important prognostic factors in head and neck squamous cell carcinomas (HNSCCs) and critical for delineating their treatment. However, clinical and histological criteria for the diagnosis of nodal status remain limited. In the present study, we aimed to characterize the proteomic profile of lymph node metastasis from HNSCC patients. METHODS: In the present study, we used one- and two-dimensional electrophoresis and mass spectrometry analysis to characterize the proteomic profile of lymph node metastasis from HNSCC. RESULTS: Comparison of metastatic and non-metastatic lymph nodes showed 52 differentially expressed proteins associated with neoplastic development and progression. The results reinforced the idea that tumors from different anatomical subsites have dissimilar behaviors, which may be influenced by micro-environmental factor including the lymphatic network. The expression pattern of heat shock proteins and glycolytic enzymes also suggested an effect of the lymph node environment in controlling tumor growth or in metabolic reprogramming of the metastatic cell. Our study, for the first time, provided direct evidence of annexin A1 overexpression in lymph node metastasis of head and neck cancer, adding information that may be useful for diagnosing aggressive disease. CONCLUSIONS: In brief, this study contributed to our understanding of the metastatic phenotype of HNSCC and provided potential targets for diagnostic in this group of carcinomas.


Assuntos
Perfilação da Expressão Gênica , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Proteômica , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Idoso , Feminino , Neoplasias de Cabeça e Pescoço/genética , Humanos , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
5.
J Cell Mol Med ; 22(10): 4922-4934, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30024093

RESUMO

Macrophages play a very important role in the conduction of several regenerative processes mainly due to their plasticity and multiple functions. In the muscle repair process, while M1 macrophages regulate the inflammatory and proliferative phases, M2 (anti-inflammatory) macrophages direct the differentiation and remodelling phases, leading to tissue regeneration. The aim of this study was to evaluate the effect of red and near infrared (NIR) photobiomodulation (PBM) on macrophage phenotypes and correlate these findings with the repair process following acute muscle injury. Wistar rats were divided into 4 groups: control; muscle injury; muscle injury + red PBM; and muscle injury + NIR PBM. After 2, 4 and 7 days, the tibialis anterior muscle was processed for analysis. Macrophages phenotypic profile was evaluated by immunohistochemistry and correlated with the different stages of the skeletal muscle repair by the qualitative and quantitative morphological analysis as well as by the evaluation of IL-6, TNF-α and TGF-ß mRNA expression. Photobiomodulation at both wavelengths was able to decrease the number of CD68+ (M1) macrophages 2 days after muscle injury and increase the number of CD163+ (M2) macrophages 7 days after injury. However, only NIR treatment was able to increase the number of CD206+ M2 macrophages (Day 2) and TGF-ß mRNA expression (Day 2, 4 and 7), favouring the repair process more expressivelly. Treatment with PBM was able to modulate the inflammation phase, optimize the transition from the inflammatory to the regeneration phase (mainly with NIR light) and improve the final step of regeneration, enhancing tissue repair.


Assuntos
Terapia com Luz de Baixa Intensidade , Desenvolvimento Muscular/efeitos da radiação , Músculos/efeitos da radiação , Regeneração/efeitos da radiação , Animais , Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/genética , Diferenciação Celular/efeitos da radiação , Humanos , Macrófagos/patologia , Macrófagos/efeitos da radiação , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/lesões , Músculo Esquelético/efeitos da radiação , Músculos/lesões , Músculos/patologia , Ratos , Receptores de Superfície Celular/genética , Cicatrização/fisiologia , Cicatrização/efeitos da radiação
6.
Histopathology ; 67(3): 358-67, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25640883

RESUMO

AIMS: Metallothioneins (MTs) are proteins associated with the carcinogenesis and prognosis of various tumours. Previous studies have shown their potential as biomarkers in oral squamous cell carcinoma (OSCC). Aiming to understand more clearly the function of MTs in OSCC we evaluated, for the first time, the gene expression profile of MTs in this neoplasm. MATERIALS AND RESULTS: Tissue samples from 35 cases of tongue and/or floor of mouth OSCC, paired with their corresponding non-neoplastic oral mucosa (NNOM), were retrieved (2007-09). All tissues were analysed for the following genes using TaqMan(®) reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assays: MT1A, MT1B, MT1E, MT1F, MT1G, MT1H, MT1X, MT2A, MT3 and MT4. The expression of MT1B and MT1H was seldom detected in both OSCC and NNOM. A significant loss of MT1A, MT1X, MT3 and MT4 expression and gain of MT1F expression was observed in OSCC, compared to NNOM. Cases with MT1G down-regulation exhibited the worst prognoses. The up-regulation of MT1X was restricted to non-metastatic cases, whereas up-regulation of MT3 was related to cases with lymph node metastasis. CONCLUSIONS: Metallothionein mRNA expression is altered significantly in oral squamous cell carcinomas. The expression of MT1G, MT1X and MT3 may aid in the prognostic discrimination of OSCC cases.


Assuntos
Carcinoma de Células Escamosas/genética , Metalotioneína/genética , Neoplasias Bucais/genética , Idoso , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/secundário , Regulação para Baixo , Feminino , Humanos , Masculino , Metaloproteinase 16 da Matriz/genética , Pessoa de Meia-Idade , Mucosa Bucal/enzimologia , Neoplasias Bucais/patologia , Prognóstico , RNA Mensageiro/genética , RNA Neoplásico/genética , Neoplasias da Língua/genética , Neoplasias da Língua/patologia , Regulação para Cima
8.
Braz. j. phys. ther. (Impr.) ; 18(4): 308-314, 08/2014. tab, graf
Artigo em Inglês | LILACS | ID: lil-718136

RESUMO

BACKGROUND: Macrophages play a major role among the inflammatory cells that invade muscle tissue following an injury. Low-level laser therapy (LLLT) has long been used in clinical practice to accelerate the muscle repair process. However, little is known regarding its effect on macrophages. OBJECTIVE: This study evaluated the effect of LLLT on the mitochondrial activity (MA) of macrophages. METHOD: J774 macrophages were treated with lipopolysaccharide (LPS) and interferon - gamma (IFN-γ) (activation) for 24 h to simulate an inflammatory process, then irradiated with LLLT using two sets of parameters (780 nm; 70 mW; 3 J/cm2 and 660 nm; 15 mW; 7.5 J/cm2). Non-activated/non-irradiated cells composed the control group. MA was evaluated by the cell mitochondrial activity (MTT) assay (after 1, 3 and 5 days) in three independent experiments. The data were analyzed statistically. RESULTS: After 1 day of culture, activated and 780 nm irradiated macrophages showed lower MA than activated macrophages, but activated and 660 nm irradiated macrophages showed MA similar to activated cells. After 3 days, activated and irradiated (660 nm and 780 nm) macrophages showed greater MA than activated macrophages, and after 5 days, the activated and irradiated (660 nm and 780 nm) macrophages showed similar MA to the activated macrophages. CONCLUSIONS: These results show that 660 nm and 780 nm LLLT can modulate the cellular activation status of macrophages in inflammation, highlighting the importance of this resource and of the correct determination of its parameters in the repair process of skeletal muscle. .


CONTEXTUALIZAÇÃO: O macrófago tem papel de destaque dentre as células inflamatórias que invadem o músculo após as lesões. Por outro lado, o laser em baixa intensidade (LBI) tem sido muito utilizado na clínica para acelerar o reparo muscular, e pouco se conhece sobre seu efeito nos macrófagos. OBJETIVO: Avaliar o efeito do LBI sobre a atividade mitocondrial (AM) de macrófagos ativados para simular um processo inflamatório. MÉTODO: Macrófagos J774 foram tratados com lipopolissacarídeo (LPS) e IFN-gamma (ativação) por 24 horas para simular um processo inflamatório e então foram irradiados com LBI (780 nm; 70 mW; 3 J/cm(2) e 660 nm; 15mW; 7,5 J/cm(2)). A AM foi avaliada pela técnica MTT após um, três e cinco dias das irradiações. Foram realizados três experimentos independentes, e os dados, submetidos à análise estatística. RESULTADOS: Após um dia de cultivo, os macrófagos ativados e irradiados com o laser de 780 nm mostraram AM menor que os somente ativados, já os macrófagos ativados e irradiados com o laser de 660 mostraram AM semelhante aos somente ativados. Após três dias, os macrófagos ativados e irradiados (660 e 780 nm) mostraram AM maior que os macrófagos ativados; já após cinco dias, os grupos ativados e irradiados (660 e 780 nm) mostraram AM semelhante aos macrófagos somente ativados. CONCLUSÕES: Esses resultados mostram que tanto o LBI de 660 nm como o de 780 nm são capazes de modular a ativação celular de macrófagos em situação de inflamação, ressaltando a importância desse recurso e da determinação de seus parâmetros dosimétricos no processo de reparo do músculo esquelético. .


Assuntos
Terapia com Luz de Baixa Intensidade , Macrófagos/metabolismo , Macrófagos/efeitos da radiação , Mitocôndrias/efeitos da radiação , Células Cultivadas
9.
Braz J Phys Ther ; 18(4): 308-14, 2014.
Artigo em Inglês, Português | MEDLINE | ID: mdl-25076002

RESUMO

BACKGROUND: Macrophages play a major role among the inflammatory cells that invade muscle tissue following an injury. Low-level laser therapy (LLLT) has long been used in clinical practice to accelerate the muscle repair process. However, little is known regarding its effect on macrophages. OBJECTIVE: This study evaluated the effect of LLLT on the mitochondrial activity (MA) of macrophages. METHOD: J774 macrophages were treated with lipopolysaccharide (LPS) and interferon - gamma (IFN-γ) (activation) for 24 h to simulate an inflammatory process, then irradiated with LLLT using two sets of parameters (780 nm; 70 mW; 3 J/cm2 and 660 nm; 15 mW; 7.5 J/cm2). Non-activated/non-irradiated cells composed the control group. MA was evaluated by the cell mitochondrial activity (MTT) assay (after 1, 3 and 5 days) in three independent experiments. The data were analyzed statistically. RESULTS: After 1 day of culture, activated and 780 nm irradiated macrophages showed lower MA than activated macrophages, but activated and 660 nm irradiated macrophages showed MA similar to activated cells. After 3 days, activated and irradiated (660 nm and 780 nm) macrophages showed greater MA than activated macrophages, and after 5 days, the activated and irradiated (660 nm and 780 nm) macrophages showed similar MA to the activated macrophages. CONCLUSIONS: These results show that 660 nm and 780 nm LLLT can modulate the cellular activation status of macrophages in inflammation, highlighting the importance of this resource and of the correct determination of its parameters in the repair process of skeletal muscle.


Assuntos
Terapia com Luz de Baixa Intensidade , Macrófagos/metabolismo , Macrófagos/efeitos da radiação , Mitocôndrias/efeitos da radiação , Células Cultivadas
10.
PLoS One ; 7(12): e50517, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23227181

RESUMO

The prediction of tumor behavior for patients with oral carcinomas remains a challenge for clinicians. The presence of lymph node metastasis is the most important prognostic factor but it is limited in predicting local relapse or survival. This highlights the need for identifying biomarkers that may effectively contribute to prediction of recurrence and tumor spread. In this study, we used one- and two-dimensional gel electrophoresis, mass spectrometry and immunodetection methods to analyze protein expression in oral squamous cell carcinomas. Using a refinement for classifying oral carcinomas in regard to prognosis, we analyzed small but lymph node metastasis-positive versus large, lymph node metastasis-negative tumors in order to contribute to the molecular characterization of subgroups with risk of dissemination. Specific protein patterns favoring metastasis were observed in the "more-aggressive" group defined by the present study. This group displayed upregulation of proteins involved in migration, adhesion, angiogenesis, cell cycle regulation, anti-apoptosis and epithelial to mesenchymal transition, whereas the "less-aggressive" group was engaged in keratinocyte differentiation, epidermis development, inflammation and immune response. Besides the identification of several proteins not yet described as deregulated in oral carcinomas, the present study demonstrated for the first time the role of cofilin-1 in modulating cell invasion in oral carcinomas.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Cofilina 1/metabolismo , Neoplasias Bucais/metabolismo , Proteômica , Idoso , Carcinoma de Células Escamosas/patologia , Cofilina 1/genética , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Feminino , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Metástase Linfática , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Neoplasias Bucais/patologia , Invasividade Neoplásica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA