Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neotrop Entomol ; 52(6): 1041-1056, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37861965

RESUMO

Chemical communication plays a major role in regulating social dynamics in social insect colonies. The most studied class of chemical compounds are the cuticular hydrocarbons (CHCs), compounds with high molecular weight that cover the insect body. CHCs are used in nestmate recognition and to signal reproductive status. Brood, in the form of larvae and eggs, is known to participate in chemical communication and social dynamics by performing hunger behaviour and inducing interaction with adults and conferring nest and maternity identity. CHCs of adults and egg surface compounds are similar in composition in social insect species. The main source of egg compounds is proposed to be Dufour's gland, an accessory reproductive gland found in several Hymenoptera females. There is still a lack of information about the level of similarity among CHCs, compounds of egg surface and Dufour's gland for several wasp species, which could provide correlational evidence about the origins of egg-marking compounds. Thus, we investigated whether egg surface compounds were more similar to CHCs or Dufour's gland secretions in two Neotropical primitively eusocial wasp species, Polistes versicolor (Olivier) and Mischocyttarus metathoracicus (de Saussure, 1854). As expected, there was a higher chemical similarity between eggs and Dufour's gland secretions in both studied species, supporting the hypothesis that this gland is the source of chemical compounds found over the eggs in these two primitively eusocial species.


Assuntos
Vespas , Humanos , Gravidez , Feminino , Animais , Vespas/fisiologia , Reprodução , Larva , Hidrocarbonetos
2.
Naturwissenschaften ; 110(3): 25, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37227507

RESUMO

Cuticular hydrocarbons (CHCs) are often used in the chemical communication among social insects. CHCs can be used in nestmate recognition and as queen pheromones, the latter allows the regulation of the reproductive division of labor. In the common wasp Vespula vulgaris, CHCs and egg-marking hydrocarbons are caste-specific, being hydrocarbon queen pheromones and egg maternity signals. Whether these compounds are conserved among other Vespinae wasps remains unknown. Queens, virgin queens, reproductive workers, and workers belonging to four different wasp species, Dolichovespula media, Dolichovespula saxonica, Vespa crabro, and Vespula germanica, were collected and studied. The cuticular hydrocarbons, egg surface, and Dufour's gland composition were characterized and it was found that chemical compounds are caste-specific in the four species. Quantitative and qualitative differences were detected in the cuticle, eggs, and Dufour's gland. Some specific hydrocarbons that were shown to be overproduced in the cuticle of queens were also present in higher quantities in queen-laid eggs and in their Dufour's gland. These hydrocarbons can be indicated as putative fertility signals that regulate the division of reproductive labor in these Vespine societies. Our results are in line with the literature for V. vulgaris and D. saxonica, in which hydrocarbons were shown to be conserved queen signals. This work presents correlative evidence that queen chemical compounds are found not only over the body surface of females but also in other sources, such as the Dufour's gland and eggs.


Assuntos
Vespas , Humanos , Gravidez , Animais , Feminino , Vespas/fisiologia , Reprodução , Fertilidade , Feromônios/química , Hidrocarbonetos
3.
iScience ; 26(4): 106469, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37091245

RESUMO

In contrast to extensive investigations on bee cognition, the cognitive capacities of wasps remain largely unexplored despite their key role as pollinators and predators of insect pests. Here we studied learning and memory in the neotropical wasp Mischocyttarus cerberus using a Pavlovian conditioning in which harnessed wasps respond with conditioned movements of their mouthparts to a learned odorant. We focused on the different castes, sexes, and ages coexisting within a nest and found that adults of M. cerberus learned and memorized efficiently the odor-sugar associations. In contrast, newly emerged females, but not males, were unable to learn odorants. This difference concurs with their different lifestyle as young males perform regular excursions outside the nest while young females remain in it until older age. Our results thus highlight the importance of socio-ecological constraints on wasp cognition and set the basis for mechanistic studies on learning differences across ages and castes.

4.
Naturwissenschaften ; 108(3): 15, 2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33864527

RESUMO

Sexual pheromones are chemical molecules responsible for mediating sex recognition and mating events. Long- and close-range sexual pheromones act differently. The first type is released to attract potential partners, whereas the second coordinates the interactions after potential mating partners encounter each other. Cuticular hydrocarbons (CHCs) have been suggested to be important cues in the mating systems of several Hymenoptera species, although empirical data are still lacking for many species. Here, we evaluated whether males of the model species Polistes dominula can differentiate the sex of individuals based on their CHC composition. In August 2019, several post-worker emergent nests (n = 19) were collected in the vicinity of Leuven (Belgium) and taken to the lab (KU Leuven), where newly emerged females and males were sampled, marked individually, and kept in plastic boxes for at least a week before being used in the mating trials. Focal males were paired with females and males from different nests and subjected to five different conditions: (I) alive, (II) dead, (III) CHCs washed, (IV) CHCs partially returned, and (V) CHCs from the opposite sex. We videotaped the interactions for 10 min and analysed the duration and different behavioural interactions of the focal male. Our results indicate that CHCs may be used by males as cues to recognise a potential mating partner in P. dominula, since the focal males displayed specific courtship behaviours exclusively toward females. Although we cannot exclude that visual cues could also be used in combination with the chemical ones, we empirically demonstrate that CHCs may be important to convey sexual information at close range in mating systems, allowing fast decisions toward potential sexual partners or rivals.


Assuntos
Sinais (Psicologia) , Hidrocarbonetos/metabolismo , Atrativos Sexuais/química , Vespas/fisiologia , Animais , Feminino , Hidrocarbonetos/farmacologia , Masculino , Comportamento Sexual Animal/efeitos dos fármacos , Gravação de Videoteipe
5.
J Chem Ecol ; 46(9): 835-844, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32789711

RESUMO

The dominance hierarchy in primitively eusocial insect societies has been shown to be mainly regulated through aggressive interactions. Females that are generally more dominant stand out and occupy the queen position, meaning that they monopolize reproduction while others perform other tasks. Chemical communication is important for maintaining social cohesion. Cuticular hydrocarbons are recognized as the main molecules responsible for mediating social interactions, especially nestmate recognition and queen signalling. Many highly eusocial groups have been studied in recent years, but primitively eusocial groups, which are key to understanding the evolution of social behavior, remain unexplored. In this study, we investigated the connection between cuticular hydrocarbons in females expressed in different social contexts in the primitively eusocial wasp Mischocyttarus cerberus. Colonies in two different ontogenetic phases, pre- and post-worker emergence, were used. We observed and categorized behavioral interactions between individual females and collected all individuals in a nest to obtain information on size, ovary activation and chemical composition. Furthermore, we conducted experiments in which the alpha (dominant) females were removed from nests to produce a new dominance hierarchy. We found that females in different hierarchical positions had small chemical difference corresponding with ovary activity. Our results support the hypothesis that cuticular hydrocarbons are associated with social context in this primitively eusocial species, with some compounds being associated with hierarchical position and ovarian activity.


Assuntos
Alcanos/química , Comportamento Animal/fisiologia , Ovário/fisiologia , Comportamento Social , Predomínio Social , Vespas/fisiologia , Agressão/fisiologia , Animais , Feminino , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA