Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 260: 113963, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32004961

RESUMO

Analysis of the transcriptome of organisms exposed to toxicants offers new insights for ecotoxicology, but further research is needed to enhance interpretation of results and effectively incorporate them into useful environmental risk assessments. Factors that must be clarified to improve use of transcriptomics include assessment of the effect of organism sex within the context of toxicant exposure. Amphipods are well recognized as model organisms for toxicity evaluation because of their sensitivity and amenability to laboratory conditions. To investigate whether response to metals in crustaceans differs according to sex we analyzed the amphipod Parhyale hawaiensis after exposure to AgCl and Ag nanoparticles (AgNP) via contaminated food. Gene specific analysis and whole genome transcriptional profile of male and female organisms were performed by both RT-qPCR and RNA-seq. We observed that expression of transcripts of genes glutathione transferase (GST) did not differ among AgCl and AgNP treatments. Significant differences between males and females were observed after exposure to AgCl and AgNP. Males presented twice the number of differentially expressed genes in comparison to females, and more differentially expressed were observed after exposure to AgNP than AgCl treatments in both sexes. The genes that had the greatest change in expression relative to control were those genes related to peptidase and catalytic activity and chitin and carbohydrate metabolic processes. Our study is the first to demonstrate sex specific differences in the transcriptomes of amphipods upon exposure to toxicants and emphasizes the importance of considering gender in ecotoxicology.


Assuntos
Anfípodes/genética , Nanopartículas Metálicas , Prata/toxicidade , Animais , Ecotoxicologia , Feminino , Perfilação da Expressão Gênica , Masculino , Transcriptoma
2.
Sci Rep ; 6: 28774, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27358031

RESUMO

Plant microbiome and its manipulation herald a new era for plant biotechnology with the potential to benefit sustainable crop production. However, studies evaluating the diversity, structure and impact of the microbiota in economic important crops are still rare. Here we describe a comprehensive inventory of the structure and assemblage of the bacterial and fungal communities associated with sugarcane. Our analysis identified 23,811 bacterial OTUs and an unexpected 11,727 fungal OTUs inhabiting the endophytic and exophytic compartments of roots, shoots, and leaves. These communities originate primarily from native soil around plants and colonize plant organs in distinct patterns. The sample type is the primary driver of fungal community assemblage, and the organ compartment plays a major role in bacterial community assemblage. We identified core bacterial and fungal communities composed of less than 20% of the total microbial richness but accounting for over 90% of the total microbial relative abundance. The roots showed 89 core bacterial families, 19 of which accounted for 44% of the total relative abundance. Stalks are dominated by groups of yeasts that represent over 12% of total relative abundance. The core microbiome described here comprise groups whose biological role underlies important traits in plant growth and fermentative processes.


Assuntos
Fenômenos Fisiológicos Bacterianos , Fungos/fisiologia , Microbiota , Saccharum/microbiologia , Fenômenos Fisiológicos Bacterianos/genética , Biodiversidade , Análise por Conglomerados , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , Brotos de Planta/microbiologia , Análise de Componente Principal , RNA Ribossômico 16S/classificação , RNA Ribossômico 16S/genética , Rizosfera , Microbiologia do Solo
3.
Sci Rep ; 6: 29543, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27404280

RESUMO

Microbiome analysis using metagenomic sequencing has revealed a vast microbial diversity associated with plants. Identifying the molecular functions associated with microbiome-plant interaction is a significant challenge concerning the development of microbiome-derived technologies applied to agriculture. An alternative to accelerate the discovery of the microbiome benefits to plants is to construct microbial culture collections concomitant with accessing microbial community structure and abundance. However, traditional methods of isolation, cultivation, and identification of microbes are time-consuming and expensive. Here we describe a method for identification of microbes in culture collections constructed by picking colonies from primary platings that may contain single or multiple microorganisms, which we named community-based culture collections (CBC). A multiplexing 16S rRNA gene amplicon sequencing based on two-step PCR amplifications with tagged primers for plates, rows, and columns allowed the identification of the microbial composition regardless if the well contains single or multiple microorganisms. The multiplexing system enables pooling amplicons into a single tube. The sequencing performed on the PacBio platform led to recovery near-full-length 16S rRNA gene sequences allowing accurate identification of microorganism composition in each plate well. Cross-referencing with plant microbiome structure and abundance allowed the estimation of diversity and abundance representation of microorganism in the CBC.


Assuntos
Genética Microbiana , Metagenômica/métodos , Técnicas Microbiológicas , Microbiota , Análise de Sequência de DNA/métodos , Técnicas de Cultura , DNA Bacteriano , Reação em Cadeia da Polimerase , RNA Ribossômico 16S , Saccharum/microbiologia
4.
Front Plant Sci ; 7: 342, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27047520

RESUMO

Sequencing plant genomes are often challenging because of their complex architecture and high content of repetitive sequences. Sugarcane has one of the most complex genomes. It is highly polyploid, preserves intact homeologous chromosomes from its parental species and contains >55% repetitive sequences. Although bacterial artificial chromosome (BAC) libraries have emerged as an alternative for accessing the sugarcane genome, sequencing individual clones is laborious and expensive. Here, we present a strategy for sequencing and assembly reads produced from the DNA of pooled BAC clones. A set of 178 BAC clones, randomly sampled from the SP80-3280 sugarcane BAC library, was pooled and sequenced using the Illumina HiSeq2000 and PacBio platforms. A hybrid assembly strategy was used to generate 2,451 scaffolds comprising 19.2 MB of assembled genome sequence. Scaffolds of ≥20 Kb corresponded to 80% of the assembled sequences, and the full sequences of forty BACs were recovered in one or two contigs. Alignment of the BAC scaffolds with the chromosome sequences of sorghum showed a high degree of collinearity and gene order. The alignment of the BAC scaffolds to the 10 sorghum chromosomes suggests that the genome of the SP80-3280 sugarcane variety is ∼19% contracted in relation to the sorghum genome. In conclusion, our data show that sequencing pools composed of high numbers of BAC clones may help to construct a reference scaffold map of the sugarcane genome.

5.
Virus Genes ; 32(3): 289-98, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16732481

RESUMO

The Citrus leprosis disease (CiL) is associated to a virus (CiLV) transmitted by Brevipalpus spp. mites (Acari: Tenuipalpidae). CiL is endemic in Brazil and its recently spreading to Central America represents a threat to citrus industry in the USA. Electron microscopy images show two forms of CiLV: a rare nuclear form, characterized by rod-shaped naked particle (CiLV-N) and a common cytoplasmic form (CiLV-C) associated with bacilliform-enveloped particle and cytoplasmic viroplasm. Due to this morphological feature, CiLV-C has been treated as Rhabdovirus-like. In this paper we present the complete nucleotide sequence and genomic organization of CiLV-C. It is a bipartite virus with sequence similarity to ssRNA positive plant virus. RNA1 encodes a putative replicase polyprotein and an ORF with no known function. RNA2 encodes 4 ORFs. pl5, p24 and p61 have no significant similarity to any known proteins and p32 encodes a protein with similarity to a viral movement protein. The CiLV-C sequences are associated with typical symptoms of CiL by RT-PCR. Phylogenetic analysis suggests that CiLV-C is probably a member of a new family of plant virus evolutionarily related to Tobamovirus.


Assuntos
Sequência de Bases , Citrus sinensis/virologia , Genoma Viral , Doenças das Plantas/virologia , Vírus de Plantas/genética , Vírus de RNA/genética , Dados de Sequência Molecular , Filogenia , Folhas de Planta/virologia , Vírus de Plantas/classificação , Vírus de RNA/classificação , RNA Viral/análise , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA