Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Entomol ; 58(4): 1962-1965, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-33764454

RESUMO

In October 2020, three captive male white-tailed deer, Odocoileus virginianus [Zimmermann] (artiodactyla: Cervidae), were found dead in central Pennsylvania and a fourth was euthanized due to extreme lethargy. The deer presented with high burdens of Dermacentor albipictus (Packard) (Ixoda: Ixodidae) (winter tick). There were no other clinical symptoms and deer were in otherwise good physical condition with no observed alopecia. Winter tick epizootics have been associated with mortalities of moose, Alces alces [Linnaeus] (artiodactyla: cervidae), and more recently elk, Cervus canadensis [Erxleben] (artiodactyla: cervidae), in Pennsylvania, but have not been reported in white-tailed deer. Mild winters are favorable to winter ticks and deer producers and managers should be aware of possible infestations as a result.


Assuntos
Cervos/parasitologia , Dermacentor , Infestações por Carrapato/veterinária , Animais , Mudança Climática , Dermacentor/patogenicidade , Ixodidae/patogenicidade , Masculino , Pennsylvania/epidemiologia , Estações do Ano , Controle de Ácaros e Carrapatos
2.
Parasit Vectors ; 7: 456, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25266983

RESUMO

BACKGROUND: Acaricide resistant Rhipicephalus microplus populations have become a major problem for many cattle producing areas of the world. Pyrethroid resistance in arthropods is typically associated with mutations in domains I, II, III, and IV of voltage-gated sodium channel genes. In R. microplus, known resistance mutations include a domain II change (C190A) in populations from Australia, Africa, and South America and a domain III mutation (T2134A) that only occurs in Mexico and the U.S. METHODS: We investigated pyrethroid resistance in cattle fever ticks from Texas and Mexico by estimating resistance levels in field-collected ticks using larval packet discriminating dose (DD) assays and identifying single nucleotide polymorphisms (SNPs) in the para-sodium channel gene that associated with resistance. We then developed qPCR assays for three SNPs and screened a larger set of 1,488 R. microplus ticks, representing 77 field collections and four laboratory strains, for SNP frequency. RESULTS: We detected resistance SNPs in 21 of 68 U.S. field collections and six of nine Mexico field collections. We expected to identify the domain III SNP (T2134A) at a high frequency; however, we only found it in three U.S. collections. A much more common SNP in the U.S. (detected in 19 of 21 field collections) was the C190A domain II mutation, which has never before been reported from North America. We also discovered a novel domain II SNP (T170C) in ten U.S. and two Mexico field collections. The T170C transition mutation has previously been associated with extreme levels of resistance (super-knockdown resistance) in insects. We found a significant correlation (r = 0.81) between the proportion of individuals in field collections that carried any two resistance SNPs and the percent survivorship of F1 larvae from these collections in DD assays. This relationship is accurately predicted by a simple linear regression model (R2 = 0.6635). CONCLUSIONS: These findings demonstrate that multiple mutations in the para-sodium channel gene independently associate with pyrethroid resistance in R. microplus ticks, which is likely a consequence of human-induced selection.


Assuntos
Doenças dos Bovinos/parasitologia , Inseticidas , Piretrinas , Rhipicephalus/genética , Canais de Sódio/genética , Infestações por Carrapato/veterinária , Animais , Sequência de Bases , Bovinos , Doenças dos Bovinos/prevenção & controle , Feminino , Genótipo , Resistência a Inseticidas/genética , Larva , Modelos Lineares , México , Dados de Sequência Molecular , Mutação , Fenótipo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Infestações por Carrapato/prevenção & controle , Estados Unidos
3.
J Med Entomol ; 49(3): 555-62, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22679862

RESUMO

ABSTRACT Acetylcholinesterase cDNAs, BmAChE1, BmAChE2, and BmAChE3 of Rhipicephalus (Boophilus) microplus (Canestrini) were sequenced and found to exhibit significant polymorphism. A portion of the predicted amino acid substitutions in BmAChE1, BmAChE2, and BmAChE3 were found predominantly in organophosphate-resistant strains, but most did not correlate with resistant status. Multiple transcripts were observed from individual ticks, suggesting possible gene duplication or alternative splicing to produce more than two transcripts per individual. BmAChE1 transcript polymorphisms associating with organophosphate-resistant status in laboratory strains were surveyed in laboratory and Mexican strains of R. microplus by sequencing BmAChE1 genomic DNA. Quantitative real-time polymerase chain reaction was used to determine copy numbers of BmAChE1 (eight copies/haploid genome), BmAChE2 (16 copies/haploid genome), and BmAChE3 (four copies/haploid genome). Presence of at least three highly polymorphic amplified genes expressing AChE in tick synganglion suggested that ticks maintain a large and diverse assortment of AChE alleles available for rapid recombination and selection, which potentially reduces fitness costs associated with individual mutations. Elevated copy numbers for each of the BmAChEs may also explain previous failures to identify mutations resulting in insensitivity to organophosphates. It is clear that development of phenotypic resistance to organophosphates is highly complex and may be multigenic in character.


Assuntos
Acetilcolinesterase/genética , Resistência a Inseticidas/genética , Inseticidas , Organofosfatos , Rhipicephalus/genética , Acetilcolinesterase/metabolismo , Animais , Bovinos , Dosagem de Genes , Genótipo , México , Polimorfismo Genético , Rhipicephalus/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA