Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 11(8)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36009773

RESUMO

Microalgae have demonstrated a large potential in biotechnology as a source of various macromolecules (proteins, carbohydrates, and lipids) and high-added value products (pigments, poly-unsaturated fatty acids, peptides, exo-polysaccharides, etc.). The production of biomass at a large scale becomes more economically feasible when it is part of a biorefinery designed within the circular economy concept. Thus, the aim of this critical review is to highlight and discuss challenges and future trends related to the multi-product microalgae-based biorefineries, including both phototrophic and mixotrophic cultures treating wastewater and the recovery of biomass as a source of valuable macromolecules and high-added and low-value products (biofertilizers and biostimulants). The therapeutic properties of some microalgae-bioactive compounds are also discussed. Novel trends such as the screening of species for antimicrobial compounds, the production of bioplastics using wastewater, the circular economy strategy, and the need for more Life Cycle Assessment studies (LCA) are suggested as some of the future research lines.

2.
Mar Drugs ; 17(8)2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31394767

RESUMO

Several factors have the potential to influence microalgae growth. In the present study, nitrogen concentration and light intensity were evaluated in order to obtain high biomass production and high phycoerythrin accumulation from Porphyridium purpureum. The range of nitrogen concentrations evaluated in the culture medium was 0.075-0.450 g L-1 and light intensities ranged between 30 and 100 µmol m-2 s-1. Surprisingly, low nitrogen concentration and high light intensity resulted in high biomass yield and phycoerythrin accumulation. Thus, the best biomass productivity (0.386 g L-1 d-1) and biomass yield (5.403 g L-1) were achieved with NaNO3 at 0.075 g L-1 and 100 µmol m-2 s-1. In addition, phycoerythrin production was improved to obtain a concentration of 14.66 mg L-1 (2.71 mg g-1 of phycoerythrin over dry weight). The results of the present study indicate that it is possible to significantly improve biomass and pigment production in Porphyridium purpureum by limiting nitrogen concentration and light intensity.


Assuntos
Nitrogênio/farmacologia , Ficoeritrina/metabolismo , Porphyridium/efeitos dos fármacos , Porphyridium/crescimento & desenvolvimento , Biomassa , Meios de Cultura/metabolismo , Luz , Microalgas/efeitos dos fármacos , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo
3.
World J Microbiol Biotechnol ; 35(1): 14, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30604002

RESUMO

The effects of bicarbonate loading rate (BLR) and pH on growth kinetics, inorganic carbon speciation, carbon fixation and lipid content in Neochloris oleoabundans cultures using anaerobically digested stillage (ADS) (2% v/v) were investigated. Four different cultures were established: culture A with BLR = 1 g l-1 day-1 and no pH adjustment, culture B with BLR = 0.5 g l-1 day-1 and no pH adjustment, culture C with BLR = 1 g l-1 day-1 and pH adjustment at 7.0, and culture D with BLR = 0.5 g l-1 day-1 and pH adjustment at 7.0. The experiments were carried out in flat plate reactors (4 l) at controlled conditions (light intensity of 134 µmol photon m-1 s-1 and photoperiod 16 light/8 darkness; temperature of 32 ± 1 °C). The effects of pH (7, 10.41, 10.65, and 12), time (15, 30, 60, and 90 min), and concentration of a cationic polyelectrolyte (CP) (10 and 20 mg l-1) on the flocculation efficiency (FE) of N. oleoabundans were also investigated. The results showed that bicarbonate was the predominant carbon species in the media and the main carbon source for microalgae growth in all cultures. The highest productivity (87.70 ± 9.70 mg l-1 day-1) and CO2(aq) fixation rate (0.15 g CO2(aq) l-1 day-1) were found in culture B. The lipid content in N. oleoabundans was affected negatively by the pH adjustment at 7.0 during its growth; higher values were found in cultures with no pH adjustment (37.10% and 38.85% dw for culture A and B, respectively) as compared to those obtained in cultures with pH adjustment (27.35% and 22.20% dw for culture C and D, respectively) (p < 0.05). Regarding flocculation, the addition of 20 mg CP l-1 was required to obtain a FE > 95% in cultures A and B, although a significant FE (40-59%) occurred without CP addition at a high pH (≥ 10.41) in all cultures.


Assuntos
Carbono/metabolismo , Microalgas/metabolismo , Clorófitas/metabolismo , Floculação , Concentração de Íons de Hidrogênio , Temperatura
4.
Environ Sci Pollut Res Int ; 26(6): 5955-5970, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30613890

RESUMO

The continuous adsorption-desorption of methylene blue (MB) on an invasive macrophyte, Salvinia minima, was investigated in fixed-bed columns. The effects of bed depth (h) (9.30, 18.70, and 28 cm), inlet dye concentration (C0) (51 ± 1.20, 154 ± 2.00, and 250 ± 1.50 mg L-1), and flow rate (Q) (7 and 14 mL min-1) on dye removal and breakthrough curves were assessed. Thomas, modified dose-response (MDR) and bed depth service time (BDST) models were fitted to the experimental data. Desorption and regeneration studies were also performed. The breakthrough time was affected by h, C0, and Q. The dynamic bed capacity at the breakthrough point (qb) increased with increasing h but decreased with increasing C0 and Q. Dynamic bed capacities (qe) from 318 to 322 mg g-1 were achieved at h = 28 cm, C0 = 154 ± 2.0, or 250 ± 1.50 mg L-1, independently of the Q value. High MB removals were also observed (75-78%). FTIR analysis revealed that hydroxyl and carboxyl groups could be involved in dye adsorption. MDR and BDST models were both successfully used to predict the breakthrough curves of MB adsorption onto S. minima. A high regeneration efficiency (> 87%) was obtained after three adsorption-desorption cycles. These results confirm that the use of S. minima biomass could be a very efficient and eco-friendly alternative for MB adsorption in continuous mode.


Assuntos
Corantes/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Adsorção , Biodegradação Ambiental , Biomassa , Corantes/análise , Espécies Introduzidas , Azul de Metileno/análise , Azul de Metileno/química , Plantas/metabolismo , Poluentes Químicos da Água/análise
6.
Sci Total Environ ; 592: 326-333, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28319719

RESUMO

Phytofiltration lagoons are phytoremediation technologies suitable for tropical and sub-tropical regions requiring cost-effective and echo-friendly technologies. A biorefinery of fourth generation has been implemented at pilot plant level in Xalapa, Mexico, and the phytofiltration lagoon, being the first module for provision of treated water and plant biomass for biofuel production plays a key role. The aim of this work was to evaluate the performance of such phytofiltration lagoon with a working volume of 13,000 L for the removal of nutrients from an urban river polluted with domestic wastewater and the biomass productivity of the macrophyte Pistia stratiotes, during five different experimental periods, comprising 42 days each one. The maximum absolute growth rates (AGR, gdwday-1) registered for P. stratiotes during the Aug-Oct '15 and the March-Apr '16 and Apr-May '16 period were in the range of 13.51±2.66 to 16.54±2.02gdwday-1. The average biomass productivity was 5.808gdwm-2day-1. Productivities were similar during the periods of Aug-Oct '15, Mar-Apr '16 and Apr-May '16 and significantly higher (p<0.05) than those registered in Oct-Nov '15 and Jan-Feb '16. Removal percentages of COD and nutrients varied according to the season. COD was in the range of 47.82±39.3% to 88.00±15.0%. Ammonium N was in the range of 76.78±21% to 98.79±0.9%. Nitrates were removed in the range of 16.92±64%. to 97.14±4.5%. Finally, phosphates were removed very effectively, from 73.72±18.5% to 92.89±4.3%. A hydraulic retention time of 7 days was enough for the effective treatment of the water from the polluted river. It was concluded that the phytofiltration lagoon with P. stratiotes is very feasible within the biorefinery for providing biomass year-round and for treating the polluted water very effectively.


Assuntos
Araceae , Biodegradação Ambiental , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água , México , Águas Residuárias
7.
Primates ; 56(1): 29-35, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25163777

RESUMO

To construct informed conservation plans, researchers must go beyond understanding readily apparent threats such as habitat loss and bush-meat hunting. They must predict subtle and cascading effects of anthropogenic environmental modifications. This study considered a potential cascading effect of deforestation on the howler monkeys (Alouatta pigra) of Balancán, Mexico. Deforestation intensifies flooding. Thus, we predicted that increased flooding of the Usumacinta River, which creates large bodies of water that slowly evaporate, would produce increased lead content in the soils and plants, resulting in lead exposure in the howler monkeys. The average lead levels were 18.18 ± 6.76 ppm in the soils and 5.85 ± 4.37 ppm in the plants. However, the average lead content of the hair of 13 captured howler monkeys was 24.12 ± 5.84 ppm. The lead levels in the animals were correlated with 2 of 15 blood traits (lactate dehydrogenase and total bilirubin) previously documented to be associated with exposure to lead. Our research illustrates the urgent need to set reference values indicating when adverse impacts of high environmental lead levels occur, whether anthropogenic or natural, and the need to evaluate possible cascading effects of deforestation on primates.


Assuntos
Alouatta/fisiologia , Conservação dos Recursos Naturais , Inundações , Intoxicação por Chumbo/veterinária , Doenças dos Macacos/epidemiologia , Animais , Ecossistema , Feminino , Intoxicação por Chumbo/epidemiologia , Intoxicação por Chumbo/etiologia , Masculino , México/epidemiologia , Doenças dos Macacos/induzido quimicamente
8.
Environ Monit Assess ; 185(2): 1163-73, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22527458

RESUMO

Top predators like the Neotropical otter, Lontra longicaudis annectens, are usually considered good bioindicators of habitat quality. In this study, we evaluated heavy metal contamination (Hg(tot), Pb, Cd) in the riverine habitat, prey (crustaceans and fish), and otter feces in two Ramsar wetlands with contrasting upstream contamination discharges: Río Blanco and Río Caño Grande in Veracruz, Mexico, during the dry, the wet, and the nortes seasons. Most comparisons revealed no differences between sites while seasonal differences were repeatedly detected for all of the compartments. Higher concentrations of Pb during the dry season and of Cd during the wet season in otter feces mirrored differences detected in the most seasonally consumed prey. Compared with fecal methylmercury values reported for the European otter (0.25-0.75 mg kg(-1)) in unprotected areas, the Hg(tot) levels that we measured were lower (0.02-0.17 mg kg(-1)). However, Pb (117.87 mg kg(-1)) and Cd (9.14 mg kg(-1)) concentrations were higher (Pb, 38.15 mg kg(-1) and Cd, 4.72 mg kg(-1)) in the two Ramsar wetlands. Protected areas may shelter species, but those with water-linked diets may suffer the effect of chemicals used upstream.


Assuntos
Monitoramento Ambiental , Cadeia Alimentar , Metais Pesados/análise , Lontras/fisiologia , Poluentes Químicos da Água/análise , Áreas Alagadas , Animais , Crustáceos/metabolismo , Fezes/química , Feminino , Peixes/metabolismo , Contaminação de Alimentos , Masculino
9.
N Biotechnol ; 30(1): 3-8, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22673055

RESUMO

Phytoremediation and phycoremediation are cost-effective and environmentally sound technologies for the treatment of polluted streams and wastewaters contaminated with metals. Currently, the most commonly used parameter to assess the metal uptake of biomass is (q) expressed as mg metal g dry weight(-1). By contrast, the bioconcentration factor (BCF) is one of the most widely used factors to evaluate the metal uptake capacity of macrophytes. However, both parameters the metal uptake (q) and the BCF cannot be applied to differentiate between the ability of live plants or photosynthetic microorganisms to adsorb the metal onto their surface through passive mechanisms or to accumulate the contaminant at intracellular level through metabolically active mechanisms. This mini review has the objective of discussing the need to differentiate between bioadsorption and bioaccumulation of metals in live plants and photosynthetic microorganisms used in phytofiltration and phycoremediation processes, respectively. The use of two specific factors, the bioadsorption factor (BAF) and the intracellular accumulation factor (IAF) that have been previously reported in order to make a clear differentiation between these two metal removal mechanisms in Salvinia minima and Leptolyngbya crossbyana is highlighted. It is suggested that the BAF and the IAF can be used in phytofiltration wetlands and phycoremediation lagoons, where there is the need of specific information indicating the fate of the metal in order to gain information about possible removal mechanisms. These factors could also provide a tool to decide whether it is possible to harvest the biomass and to recover a fair amount of metal adsorbed onto the surface by means of desorbent agents. A critical assessment of the use of EDTA as desorbent agent is also included.


Assuntos
Filtração/métodos , Metais Pesados/isolamento & purificação , Adsorção , Biodegradação Ambiental , Ecossistema , Poluentes Químicos da Água
10.
Biotechnol Adv ; 30(5): 1031-46, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22609182

RESUMO

Excess greenhouse gas emissions and the concomitant effect on global warming have become significant environmental, social and economic threats. In this context, the development of renewable, carbon-neutral and economically feasible biofuels is a driving force for innovation worldwide. A lot of effort has been put into developing biodiesel from microalgae. However, there are still a number of technological, market and policy barriers that are serious obstacles to the economic feasibility and competitiveness of such biofuels. Conversely, there are also a number of business opportunities if the production of such alternative biofuel becomes part of a larger integrated system following the Biorefinery strategy. In this case, other biofuels and chemical products of high added value are produced, contributing to an overall enhancement of the economic viability of the whole integrated system. Additionally, dual purpose microalgae-bacteria-based systems for treating wastewater and production of biofuels and chemical products significantly contribute to a substantial saving in the overall cost of microalgae biomass production. These types of systems could help to improve the competitiveness of biodiesel production from microalgae, according to some recent Life Cycle Analysis studies. Furthermore, they do not compete for fresh water resources for agricultural purposes and add value to treating the wastewater itself. This work reviews the most recent and relevant information about these types of dual purpose systems. Several aspects related to the treatment of municipal and animal wastewater with simultaneous recovery of microalgae with potential for biodiesel production are discussed. The use of pre-treated waste or anaerobic effluents from digested waste as nutrient additives for weak wastewater is reviewed. Isolation and screening of microalgae/cyanobacteria or their consortia from various wastewater streams, and studies related to population dynamics in mixed cultures, are highlighted as very relevant fields of research. The species selection may depend on various factors, such as the biomass and lipid productivity of each strain, the characteristics of the wastewater, the original habitat of the strain and the climatic conditions in the treatment plant, among others. Some alternative technologies aimed at harvesting biomass at a low cost, such as cell immobilization, biofilm formation, flocculation and bio-flocculation, are also reviewed. Finally, a Biorefinery design is presented that integrates the treatment of municipal wastewater with the recovery of oleaginous microalgae, together with the use of seawater supplemented with anaerobically digested piggery waste for cultivating Arthrospira (Spirulina) and producing biogas, biodiesel, hydrogen and other high added value products. Such strategies offer new opportunities for the cost-effective and competitive production of biofuels along with valuable non-fuel products.


Assuntos
Bactérias/metabolismo , Biocombustíveis/microbiologia , Reatores Biológicos/microbiologia , Microalgas/metabolismo , Águas Residuárias/microbiologia , Purificação da Água/métodos , Animais , Microalgas/crescimento & desenvolvimento , Águas Residuárias/economia , Purificação da Água/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA