Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Tree Physiol ; 42(3): 537-556, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-34508606

RESUMO

Future climate change predictions for tropical forests highlight increased frequency and intensity of extreme drought events. However, it remains unclear whether large and small trees have differential strategies to tolerate drought due to the different niches they occupy. The future of tropical forests is ultimately dependent on the capacity of small trees (<10 cm in diameter) to adjust their hydraulic system to tolerate drought. To address this question, we evaluated whether the drought tolerance of neotropical small trees can adjust to experimental water stress and was different from tall trees. We measured multiple drought resistance-related hydraulic traits across nine common neotropical genera at the world's longest-running tropical forest throughfall-exclusion experiment and compared their responses with surviving large canopy trees. Small understorey trees in both the control and the throughfall-exclusion treatment had lower minimum stomatal conductance and maximum hydraulic leaf-specific conductivity relative to large trees of the same genera, as well as a greater hydraulic safety margin (HSM), percentage loss of conductivity and embolism resistance, demonstrating that they occupy a distinct hydraulic niche. Surprisingly, in response to the drought treatment, small trees increased specific hydraulic conductivity by 56.3% and leaf:sapwood area ratio by 45.6%. The greater HSM of small understorey trees relative to large canopy trees likely enabled them to adjust other aspects of their hydraulic systems to increase hydraulic conductivity and take advantage of increases in light availability in the understorey resulting from the drought-induced mortality of canopy trees. Our results demonstrate that differences in hydraulic strategies between small understorey and large canopy trees drive hydraulic niche segregation. Small understorey trees can adjust their hydraulic systems in response to changes in water and light availability, indicating that natural regeneration of tropical forests following long-term drought may be possible.


Assuntos
Secas , Árvores , Mudança Climática , Florestas , Folhas de Planta/fisiologia , Árvores/fisiologia
2.
Nature ; 528(7580): 119-22, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26595275

RESUMO

Drought threatens tropical rainforests over seasonal to decadal timescales, but the drivers of tree mortality following drought remain poorly understood. It has been suggested that reduced availability of non-structural carbohydrates (NSC) critically increases mortality risk through insufficient carbon supply to metabolism ('carbon starvation'). However, little is known about how NSC stores are affected by drought, especially over the long term, and whether they are more important than hydraulic processes in determining drought-induced mortality. Using data from the world's longest-running experimental drought study in tropical rainforest (in the Brazilian Amazon), we test whether carbon starvation or deterioration of the water-conducting pathways from soil to leaf trigger tree mortality. Biomass loss from mortality in the experimentally droughted forest increased substantially after >10 years of reduced soil moisture availability. The mortality signal was dominated by the death of large trees, which were at a much greater risk of hydraulic deterioration than smaller trees. However, we find no evidence that the droughted trees suffered carbon starvation, as their NSC concentrations were similar to those of non-droughted trees, and growth rates did not decline in either living or dying trees. Our results indicate that hydraulics, rather than carbon starvation, triggers tree death from drought in tropical rainforest.


Assuntos
Carbono/metabolismo , Secas , Floresta Úmida , Árvores/metabolismo , Clima Tropical , Água/metabolismo , Biomassa , Tamanho Corporal , Brasil , Metabolismo dos Carboidratos , Folhas de Planta/metabolismo , Caules de Planta/metabolismo , Estações do Ano , Solo/química , Árvores/crescimento & desenvolvimento , Xilema/metabolismo
3.
New Phytol ; 187(3): 608-21, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20553394

RESUMO

*The effects of drought on the Amazon rainforest are potentially large but remain poorly understood. Here, carbon (C) cycling after 5 yr of a large-scale through-fall exclusion (TFE) experiment excluding about 50% of incident rainfall from an eastern Amazon rainforest was compared with a nearby control plot. *Principal C stocks and fluxes were intensively measured in 2005. Additional minor components were either quantified in later site measurements or derived from the available literature. *Total ecosystem respiration (R(eco)) and total plant C expenditure (PCE, the sum of net primary productivity (NPP) and autotrophic respiration (R(auto))), were elevated on the TFE plot relative to the control. The increase in PCE and R(eco) was mainly caused by a rise in R(auto) from foliage and roots. Heterotrophic respiration did not differ substantially between plots. NPP was 2.4 +/- 1.4 t C ha(-1) yr(-1) lower on the TFE than the control. Ecosystem carbon use efficiency, the proportion of PCE invested in NPP, was lower in the TFE plot (0.24 +/- 0.04) than in the control (0.32 +/- 0.04). *Drought caused by the TFE treatment appeared to drive fundamental shifts in ecosystem C cycling with potentially important consequences for long-term forest C storage.


Assuntos
Carbono/metabolismo , Secas , Árvores/metabolismo , Bactérias/metabolismo , Brasil , Dióxido de Carbono/metabolismo , Respiração Celular , Ecossistema , Solo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA