Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Enzyme Microb Technol ; 154: 109976, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34974340

RESUMO

Bacillus subtilis immobilization in calcium alginate microparticles was investigated using two techniques: droplet microfluidics-based in T-junction geometry composed with a double droplet generation system and conventional dripping system. Alginate microparticles produced by microfluidic technology presented an average size of 68.35 µm with low polydispersity and immobilization efficiency around 86%. The cell response was evaluated in batch cultivation for 24 h, viewing lipase production compared to free cells. In this study, the batch cultivation with immobilized cells in alginate microparticles presented lipase production about 2.4 and 1.7 times higher than cultivation with cells immobilized cells by conventional technique and free cells cultivations. According to the results, this main novelty of the double T junction technique is an innovative contribution as a tool for cell immobilization on a laboratory scale, since the cultivation of immobilized cells in microparticles of small size and low polydispersity favors cell growth and increases the productivity of important metabolites of industrial biotechnology.


Assuntos
Alginatos , Microfluídica , Bacillus subtilis , Ácido Glucurônico , Ácidos Hexurônicos , Lipase
2.
Artigo em Inglês | MEDLINE | ID: mdl-32401956

RESUMO

Paracoccidioides species cause paracoccidioidomycosis (PCM), a systemic mycosis highly prevalent in Brazil. Therapy of PCM has some issues that make studies for new therapeutic and vaccine targets relevant, such as the P. brasiliensis 60-kDa-heat-shock protein (PbHsp60), an immunogenic antigen that induces protection in experimental mice infection. Here, we investigated the relative expression of mRNA for PbHsp60 in P. brasiliensis in the different morphotypes of P. brasiliensis and in morphological transition phases. In addition, antibodies to rPbHsp60 were produced and used to analyze the location of PbHsp60 in yeast and hyphae by electron microscopy. The analyses showed a substantial increase in the relative amounts of HSP60 mRNA in yeast when compared to mycelium and an intermediate expression in transitional forms. Regarding the cell location, immunoelectron microscopy analysis revealed that PbHsp60 is within the cell wall. These observations suggest that this protein may be involved in the maintenance of the cell wall integrity and the interaction with the host for colonization, infection and pathogenesis.


Assuntos
Chaperonina 60/imunologia , Paracoccidioides/imunologia , RNA Mensageiro/imunologia , Animais , Antígenos de Fungos/imunologia , Expressão Gênica/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Paracoccidioides/patogenicidade , Reação em Cadeia da Polimerase
3.
Chemosphere ; 217: 349-354, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30419388

RESUMO

The distribution of arsenic in the different tissues of tilapia fish is determined by the exposure time and the depuration rate. The mechanisms of toxicity/carcinogenicity depend on the arsenic species involved in the biotransformation processes. After a 7-day exposure period, the accumulation of inorganic arsenic (iAs) in the tilapia tissues studied was in the order: liver > stomach > gills > muscles. In bioaccumulation assays, the values of the organ uptake constant (ka) ranged from 0.06 to 0.51 mL g-1 d-1, while the depuration rate constant (kd) values were in the range 0.03-1.15 d-1. Higher iAs bioaccumulation factor (BCF) values were observed for the stomach (3.1 mL g-1) and the liver (1.6 mL g-1), reflecting their high capacity to accumulate iAs species. These organs act as long-term storage sites for iAs, following chronic exposure. The LC50 values were determined considering the average iAs concentration and the cumulative fish mortality. For As(III), the LC50 values indicated fish mortality at concentrations above 30 mg L-1. The fish showed greater tolerance to exposure to As(V), compared to As(III), with fish mortality after the second day of exposure requiring an As(V) concentration 7-fold higher than As(III).


Assuntos
Arsênio/farmacocinética , Ciclídeos/metabolismo , Tilápia/metabolismo , Animais , Arsênio/toxicidade , Biotransformação , Mucosa Gástrica/metabolismo , Brânquias/metabolismo , Fígado/metabolismo , Músculos/metabolismo , Distribuição Tecidual , Poluentes Químicos da Água/farmacocinética , Poluentes Químicos da Água/toxicidade
4.
Front Microbiol ; 9: 1780, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30186241

RESUMO

Salmonella enterica infection is a major public health concern worldwide, particularly when associated with other medical conditions. The serovars Typhimurium and Enteritidis are frequently associated with an invasive illness that primarily affects immunocompromised adults and children with HIV, malaria, or malnutrition. These serovars can also cause infections in a variety of animal hosts, and they are the most common isolates in poultry materials. Here, we described S. Enteritidis mutants, where hupA and hupB genes were deleted, and evaluated their potential use as live-attenuated vaccine candidates. In vitro, the mutants behaved like S. Typhimurium described previously, but there were some particularities in macrophage invasion and survival experiments. The virulence and immunogenicity of the mutant lacking both hupA and hupB (PT4ΔhupAB) were evaluated in a BALB/c mice model. This mutant was highly attenuated and could, therefore, be administrated at doses higher than 109 CFU/treatment, which was sufficient to protect all treated mice challenged with the wild-type parental strain with a single dose. Additionally, the PT4ΔhupAB strain induced production of specific IgG and IgA antibodies against Salmonella and TH1-related cytokines (IFN-γ and TNF-α), indicating that this strain can induce systemic and mucosal protection in the murine model. Additional studies are needed to better understand the mechanisms that lead to attenuation of the double-mutant PT4ΔhupAB and to elucidate the immune response induced by immunization using this strain. However, our data allow us to state that hupAB mutants could be potential candidates to be explore as live-attenuated vaccines.

5.
Food Chem ; 240: 75-83, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28946338

RESUMO

The bioaccessibility of Ca, Cu, Fe, Mg, Zn, and crude protein was evaluated after submitting beef, pork, and chicken to five different thermal treatments. The bioaccessibility of crude protein and metals were simulated by using in vitro enzymatic digestion with a gastric fluid solution and dialysability approach. Inductively coupled plasma optical spectrometry was used to quantify the dialyzable fraction and the total mineral content after microwave-assisted digestion. Graphite furnace atomic absorption spectrometry quantified Cu in chicken dialyzable fraction. The increase of temperature and heat exposure period decreased the protein bioaccessibility. Considering the total and dialyzable fraction, beef is an important source of Cu, Fe, Mg, and Zn to the human diet. The results of Fourier-transform infrared spectroscopy indicated physical changes in the treated samples related to protein denaturation, which was probably responsible for the decreased bioaccessibility of minerals and protein, mainly at higher temperatures.


Assuntos
Cálcio/análise , Carne , Metais Pesados/análise , Animais , Bovinos , Galinhas , Humanos , Espectrofotometria Atômica , Suínos
6.
Front Microbiol ; 8: 1803, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28970825

RESUMO

Paracoccidioides brasiliensis and Paracoccidioides lutzii are fungi causing paracoccidioidomycosis (PCM), an autochthonous systemic mycosis found in Latin America. These microorganisms contain a multitude of molecules that may be associated with the complex interaction of the fungus with the host. Here, we identify the enzyme dihydrolipoyl dehydrogenase (DLD) as an exoantigen from P. brasiliensis (Pb18_Dld) by mass spectrometry. Interestingly, the DLD gene expression in yeast form showed higher expression levels than those in mycelial form and transitional phases. Pb18_Dld gene was cloned, and the recombinant protein (rPb18_Dld) was expressed and purified for subsequent studies and production of antibodies. Immunogold labeling and transmission electron microscopy revealed that the Pb18_Dld is also localized in mitochondria and cytoplasm of P. brasiliensis. Moreover, when macrophages were stimulated with rPb18Dld, there was an increase in the phagocytic and microbicidal activity of these cells, as compared with non-stimulated cells. These findings suggest that Pb18_Dld can be involved in the pathogen-host interaction, opening possibilities for studies of this protein in PCM.

7.
mBio ; 8(4)2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28720727

RESUMO

Among the endemic deep mycoses in Latin America, paracoccidioidomycosis (PCM), caused by thermodimorphic fungi of the Paracoccidioides genus, is a major cause of morbidity. Disease development and its manifestations are associated with both host and fungal factors. Concerning the latter, several recent studies have employed the methodology of gene modulation in P. brasiliensis using antisense RNA (AsRNA) and Agrobacterium tumefaciens-mediated transformation (ATMT) to identify proteins that influence fungus virulence. Our previous observations suggested that paracoccin (PCN), a multidomain fungal protein with both lectin and enzymatic activities, may be a potential P. brasiliensis virulence factor. To explore this, we used AsRNA and ATMT methodology to obtain three independent PCN-silenced P. brasiliensis yeast strains (AsPCN1, AsPCN2, and AsPCN3) and characterized them with regard to P. brasiliensis biology and pathogenicity. AsPCN1, AsPCN2, and AsPCN3 showed relative PCN expression levels that were 60%, 40%, and 60% of that of the wild-type (WT) strain, respectively. PCN silencing led to the aggregation of fungal cells, blocked the morphological yeast-to-mycelium transition, and rendered the yeast less resistant to macrophage fungicidal activity. In addition, mice infected with AsPCN1, AsPCN2, and AsPCN3 showed a reduction in fungal burden of approximately 96% compared with those inoculated with the WT strain, which displayed a more extensive destruction of lung tissue. Finally, mice infected with the PCN-silenced yeast strains had lower mortality than those infected with the WT strain. These data demonstrate that PCN acts as a P. brasiliensis contributory virulence factor directly affecting fungal pathogenesis.IMPORTANCE The nonexistence of efficient genetic transformation systems has hampered studies in the dimorphic fungus Paracoccidioides brasiliensis, the etiological agent of the most frequent systemic mycosis in Latin America. The recent development of a method for gene expression knockdown by antisense RNA technology, associated with an Agrobacterium tumefaciens-mediated transformation system, provides new strategies for studying P. brasiliensis Through this technology, we generated yeasts that were silenced for paracoccin (PCN), a P. brasiliensis component that has lectin and enzymatic properties. By comparing the phenotypes of PCN-silenced and wild-type strains of P. brasiliensis, we identified PCN as a virulence factor whose absence renders the yeasts unable to undergo the transition to mycelium and causes a milder pulmonary disease in mice, with a lower mortality rate. Our report highlights the importance of the technology used for P. brasiliensis transformation and demonstrates that paracoccin is a virulence factor acting on fungal biology and pathogenesis.


Assuntos
Proteínas Fúngicas/metabolismo , Inativação Gênica , Lectinas/metabolismo , Paracoccidioides/patogenicidade , Fatores de Virulência/metabolismo , Animais , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Proteínas Fúngicas/genética , Lectinas/genética , Masculino , Camundongos Endogâmicos BALB C , Micélio/citologia , Micélio/crescimento & desenvolvimento , Paracoccidioides/citologia , Paracoccidioides/genética , Paracoccidioides/crescimento & desenvolvimento , Paracoccidioidomicose/microbiologia , Paracoccidioidomicose/patologia , Análise de Sobrevida , Virulência , Fatores de Virulência/genética
8.
Front Microbiol ; 8: 857, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28553279

RESUMO

Rhodococcus equi is a facultative intracellular bacterium causing severe pyogranulomatous pneumonia, ulcerative enterocolitis, and mesenteric lymphadenopathy in foals aged less than 6 months. Less frequently, this pathogen affects various other species, such as pigs, cattle, cats, and even humans. Although rhodococcosis is treated with a combination of antimicrobial agents, resistance is developed in some cases, and thus, antimicrobial susceptibility must be monitored and managed. Considering these limitations of the current therapy and unavailability of a vaccine to prevent the disease, research is particularly focused on the development of an effective vaccine against rhodococcosis. Most vaccines undergoing development utilize the virulence-associated protein (Vap) A antigen, which was identified previously as a key virulence factor of R. equi. Nevertheless, other proteins, such as VapG, present in most virulent R. equi strains, are also encoded by vap genes located on the R. equi bacterial virulence plasmid. In the present study, we evaluated the effect of VapG immunization on the survival of R. equi-challenged mice. We used attenuated Salmonella as a carrier for VapG (Salmonella-vapG+), a procedure previously adopted to develop a VapA-based vaccine. We observed that vaccination with Salmonella-vapG+ induced both an increased IFN-γ, IL-12, and TNF-α production, and a decreased bacterial burden in organs of the R. equi-challenged mice. Nevertheless, Salmonella-vapG+ vaccination protected only 50% of the mice challenged with a lethal dose of R. equi. Interestingly, we observed an increased frequency of B cells in the spleen of Salmonella-vapG+-vaccinated mice and showed that Salmonella-vapG+-vaccinated R. equi-challenged B-cell-knockout mice did not reduce the bacterial burden. Given these results, we discussed the potential role of the humoral immune response induced by Salmonella-vapG+ vaccination in conferring protection against R. equi infection, as well as the employment of VapG antigen for obtaining hyperimmune plasma to prevent rhodoccocosis in young foals.

9.
Anal Chim Acta ; 951: 116-123, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-27998479

RESUMO

To the best of our knowledge, this paper outlines for the first time high adhesion and hybrid irreversible/reversible microfluidic devices fully composed of polydimethylsiloxane (PDMS). These chips were fabricated by the sandwich bonding (SWB), a method that was recently deployed by our group. SWB offers simple, fast, and low cost operation requiring only a laboratory oven. The devices showed burst pressures of up to 4.5 MPa. This value is more than tenfold the pressures withstood by the full-PDMS chips described in literature. In terms of the reversible behavior, the ability for disassembling the chip slides is crucial in research and development stages, especially when the device integrates high-cost components or harsh cleaning steps are needed. Following successive steps of detachment and bonding, the channels still withstood high pressures of approximately 1.8 MPa. Finally, the emulsification of corn oil 4.0% w/w to polyglycerol polyricinoleate with 10.0 µmol L-1 rhodamine B aqueous solution was realized to show the relevance in enhancing the flow rate in microfluidics. Such experiment was conducted at total flow rates of 0.8-160.0 µL min-1. The decrease in size and polydispersity of the droplets was observed at increasing flow rates. Monodisperse emulsions were achieved only at 160.0 µL min-1.

10.
Front Microbiol ; 7: 1003, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27458431

RESUMO

The fungal human pathogen Paracoccidioides brasiliensis contains paracoccin (PCN), a multi-domain protein that has lectin and N-acetyl-glucosaminidase activities, which account for its effects on the growth and morphogenesis of the fungus and on the activation of host macrophages through its interaction with TLR N-glycans. With the purpose of detailing the knowledge on the effects of PCN on macrophages, we used recombinant PCN expressed in Pichia pastoris (p-rPCN) to stimulate isolated murine peritoneal macrophages. The activation of these cells manifested through the release of high levels of inflammatory mediators, such as nitric oxide, TNF-α, IL-12p40, and IL-6. Furthermore, peritoneal macrophages stimulated with p-rPCN increased the relative expression of STAT1, SOCS3, and iNOS2 mRNA (M1 polarization markers). However, the expression of Arginase-1, Ym-1, and FIZZ1 (M2 polarization markers) remained at basal levels. Interestingly, the observed M1 macrophages' polarization triggered by p-rPCN was abolished in cells obtained from knockout Toll-like receptor-4 mice. In this case, the p-rPCN-induced production of pro-inflammatory mediators was blocked too. These results demonstrate that the classical activation of macrophages induced by paracoccin depends on TLR4. Taken together, the results of our study indicate that paracoccin acts as a TLR agonist able to modulate immunity and exerts biological activities that favor its applicability as an immunotherapeutic agent to combat systemic fungal infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA