Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Scand J Med Sci Sports ; 34(3): e14591, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429941

RESUMO

The enigmatic benefits of acute limb ischemic preconditioning (IP) in enhancing muscle force and exercise performance have intrigued researchers. This study sought to unravel the underlying mechanisms, focusing on increased neural drive and the role of spinal excitability while excluding peripheral factors. Soleus Hoffmann (H)-reflex /M-wave recruitment curves and unpotentiated supramaximal responses were recorded before and after IP or a low-pressure control intervention. Subsequently, the twitch interpolation technique was applied during maximal voluntary contractions to assess conventional parameters of neural output. Following IP, there was an increase in both maximum normalized force and voluntary activation (VA) for the plantar flexor group, with negligible peripheral alterations. Greater benefits were observed in participants with lower VA levels. Despite greater H-reflex gains, soleus volitional (V)-wave and sEMG amplitudes remained unchanged. In conclusion, IP improves muscle force via enhanced neural drive to the muscles. This effect appears associated, at least in part, to reduced presynaptic inhibition and/or increased motoneuron excitability. Furthermore, the magnitude of the benefit is inversely proportional to the skeletal muscle's functional reserve, making it particularly noticeable in under-recruited muscles. These findings have implications for the strategic application of the IP procedure across diverse populations.


Assuntos
Precondicionamento Isquêmico , Músculo Esquelético , Masculino , Humanos , Eletromiografia/métodos , Músculo Esquelético/fisiologia , Contração Muscular/fisiologia , Neurônios Motores/fisiologia , Contração Isométrica/fisiologia , Reflexo H/fisiologia , Estimulação Elétrica
2.
Sports (Basel) ; 12(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38535729

RESUMO

Successful performance in grappling combat sports (GCS) can be influenced by the fighter's capacity to sustain high-intensity contractions of the handgrip muscles during combat. This study investigated the influence of GCS experience on the critical torque (CT), impulse above CT (W'), tolerance, and neuromuscular fatigue development during severe-intensity handgrip exercise by comparing fighters and untrained individuals. Eleven GCS fighters and twelve untrained individuals participated in three experimental sessions for handgrip muscles: (1) familiarization with the experimental procedures and strength assessment; (2) an all-out test to determine CT and W'; and (3) intermittent exercise performed in the severe-intensity domain (CT + 15%) until task failure. No significant differences were found in CT and neuromuscular fatigue between groups (p > 0.05). However, GCS fighters showed greater W' (GCS fighters 2238.8 ± 581.2 N·m·s vs. untrained 1670.4 ± 680.6 N·m·s, p < 0.05) and exercise tolerance (GCS fighters 8.38 ± 2.93 min vs. untrained 5.36 ± 1.42 min, p < 0.05) than untrained individuals. These results suggest that long-term GCS sports training can promote increased tolerance to severe-intensity handgrip exercise and improved W' without changes in CT or the magnitude of neuromuscular fatigue.

3.
Sensors (Basel) ; 23(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37430780

RESUMO

The neural correlates of locomotion impairments observed in people with Parkinson's disease (PD) are not fully understood. We investigated whether people with PD present distinct brain electrocortical activity during usual walking and the approach phase of obstacle avoidance when compared to healthy individuals. Fifteen people with PD and fourteen older adults walked overground in two conditions: usual walking and obstacle crossing. Scalp electroencephalography (EEG) was recorded using a mobile 64-channel EEG system. Independent components were clustered using a k-means clustering algorithm. Outcome measures included absolute power in several frequency bands and alpha/beta ratio. During the usual walk, people with PD presented a greater alpha/beta ratio in the left sensorimotor cortex than healthy individuals. While approaching obstacles, both groups reduced alpha and beta power in the premotor and right sensorimotor cortices (balance demand) and increased gamma power in the primary visual cortex (visual demand). Only people with PD reduced alpha power and alpha/beta ratio in the left sensorimotor cortex when approaching obstacles. These findings suggest that PD affects the cortical control of usual walking, leading to a greater proportion of low-frequency (alpha) neuronal firing in the sensorimotor cortex. Moreover, the planning for obstacle avoidance changes the electrocortical dynamics associated with increased balance and visual demands. People with PD rely on increased sensorimotor integration to modulate locomotion.


Assuntos
Doença de Parkinson , Córtex Sensório-Motor , Humanos , Idoso , Caminhada , Locomoção , Algoritmos
4.
Int J Sports Physiol Perform ; 17(7): 1126-1131, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35551112

RESUMO

PURPOSE: The aim of this study was to identify a blood-flow-restriction (BFR) endurance exercise protocol that maximizes metabolic strain and minimizes muscle fatigue. METHODS: Twelve healthy participants accomplished 5 different interval cycling endurance exercises (2-min work, 1-min rest) in a randomized order: (1) control, low intensity with unrestricted blood flow (CON30); (2) low intensity with intermittent BFR (i-BFR30, ∼150 mm Hg); (3) low intensity with continuous BFR (c-BFR, ∼100 mm Hg); (4) unloaded cycling with i-BFR0 (∼150 mm Hg); and (5) high intensity (HI) with unrestricted blood flow. Force production, creatine kinase activity, antioxidant markers, blood pH, and potassium (K+) were measured in a range of 5 minutes before and after each cycling exercise protocol. RESULTS: HI showed the highest reduction (Δ = -0.26 [0.05], d = 5.6) on blood pH. Delta pH for c-BRF30 (Δ = -0.02 [0.03], d = 0.8) and Δ pH for i-BRF30 (Δ = -0.04 [0.03], d = 1.6) were different from each other, and both were higher compared with CON30 (Δ = 0.03 [0.03]). There was significant before-to-after force loss following HI (Δ = 55 [40] N·m-1, d = 1.5) and c-BFR30 (Δ = 27 [21] N·m-1, d = 0.7) protocols only, which were accompanied by significant increases in K+ (HI: Δ = 0.94 [0.65] mmol·L-1, d = 1.8; c-BFR30: Δ = 0.72 [0.85] mmol·L-1, d = 1.2). Moreover, all BFR conditions elicited slight increases in plasma creatine kinase, but not for HI and CON30. Glutathione changes from before to after were significant for all BFR conditions and HI, but not for CON30. CONCLUSIONS: The attenuation in fatigue-induced reductions in maximal force suggests that i-BFR exercise could be preferable to c-BFR in improving exercise capacity, with considerably less biologic stress elicited from HI exercises.


Assuntos
Fadiga Muscular , Treinamento Resistido , Creatina Quinase/metabolismo , Humanos , Músculo Esquelético/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Treinamento Resistido/métodos
5.
Neurorehabil Neural Repair ; 35(5): 406-418, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33754884

RESUMO

BACKGROUND: Dopaminergic medication improves gait in people with Parkinson disease (PD). However, it remains unclear if dopaminergic medication modulates cortical activity while walking. OBJECTIVE: We investigated the effects of dopaminergic medication on cortical activity during unobstructed walking and obstacle avoidance in people with PD. METHODS: A total of 23 individuals with PD, in both off (PDOFF) and on (PDON) medication states, and 30 healthy older adults (control group [CG]) performed unobstructed walking and obstacle avoidance conditions. Cortical activity was acquired through a combined functional near-infrared spectroscopy electroencephalography (EEG) system, along with gait parameters, through an electronic carpet. Prefrontal cortex (PFC) oxygenated hemoglobin (HbO2) and EEG absolute power from FCz, Cz, and CPz channels were calculated. RESULTS: HbO2 concentration reduced for people with PDOFF during obstacle avoidance compared with unobstructed walking. In contrast, both people with PDON and the CG had increased HbO2 concentration when avoiding obstacles compared with unobstructed walking. Dopaminergic medication increased step length, step velocity, and ß and γ power in the CPz channel, regardless of walking condition. Moreover, dopaminergic-related changes (ie, on-off) in FCz/CPz γ power were associated with dopaminergic-related changes in step length for both walking conditions. CONCLUSIONS: PD compromises the activation of the PFC during obstacle avoidance, and dopaminergic medication facilitates its recruitment. In addition, PD medication increases sensorimotor integration during walking by increasing posterior parietal cortex (CPz) activity. Increased γ power in the CPz and FCz channels is correlated with step length improvements achieved with dopaminergic medication during unobstructed walking and obstacle avoidance in PD.


Assuntos
Córtex Cerebral/fisiopatologia , Dopaminérgicos/farmacologia , Transtornos Neurológicos da Marcha , Doença de Parkinson , Desempenho Psicomotor , Caminhada , Idoso , Córtex Cerebral/diagnóstico por imagem , Eletroencefalografia , Feminino , Transtornos Neurológicos da Marcha/diagnóstico por imagem , Transtornos Neurológicos da Marcha/tratamento farmacológico , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/fisiopatologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiopatologia , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Índice de Gravidade de Doença , Espectroscopia de Luz Próxima ao Infravermelho , Caminhada/fisiologia
6.
J Gerontol A Biol Sci Med Sci ; 76(4): 561-567, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32674140

RESUMO

Parkinson's disease (PD) is often classified into tremor dominant (TD) and postural instability gait disorder (PIGD) subtypes. Degeneration of subcortical/cortical pathways is different between PD subtypes, which leads to differences in motor behavior. However, the influence of PD subtype on cortical activity during walking remains poorly understood. Therefore, we aimed to investigate the influence of PD motor subtypes on cortical activity during unobstructed walking and obstacle avoidance. Seventeen PIGD and 19 TD patients performed unobstructed walking and obstacle avoidance conditions. Brain activity was measured using a mobile functional near-infrared spectroscopy-electroencephalography (EEG) systems, and gait parameters were analyzed using an electronic carpet. Concentrations of oxygenated hemoglobin (HbO2) of the prefrontal cortex (PFC) and EEG absolute power from alpha, beta, and gamma bands in FCz, Cz, CPz, and Oz channels were calculated. These EEG channels correspond to supplementary motor area, primary motor cortex, posterior parietal cortex, and visual cortex, respectively. Postural instability gait disorder patients presented higher PFC activity than TD patients, regardless of the walking condition. Tremor dominant patients presented reduced beta power in the Cz channel during obstacle avoidance compared to unobstructed walking. Both TD and PIGD patients decreased alpha and beta power in the FCz and CPz channels. In conclusion, PIGD patients need to recruit additional cognitive resources from the PFC for walking. Both TD and PIGD patients presented changes in the activation of brain areas related to motor/sensorimotor areas in order to maintain balance control during obstacle avoidance, being that TD patients presented further changes in the motor area (Cz channel) to avoid obstacles.


Assuntos
Transtornos Neurológicos da Marcha , Oxiemoglobinas/análise , Doença de Parkinson , Equilíbrio Postural/fisiologia , Córtex Pré-Frontal , Tremor , Idoso , Eletroencefalografia/métodos , Neuroimagem Funcional/métodos , Análise da Marcha/métodos , Transtornos Neurológicos da Marcha/metabolismo , Transtornos Neurológicos da Marcha/fisiopatologia , Humanos , Doença de Parkinson/classificação , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiopatologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Tremor/metabolismo , Tremor/fisiopatologia , Caminhada/fisiologia , Caminhada/psicologia
7.
Eur J Sport Sci ; 16(2): 199-205, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25695853

RESUMO

This study examined whether short-term maximal resistance training employing fast-velocity eccentric knee extensor actions would induce improvements in maximal isometric torque and rate of force development (RFD) at early (<100 ms) and late phases (>100 ms) of rising torque. Twenty healthy men were assigned to two experimental groups: eccentric resistance training (TG) or control (CG). Participants on the TG trained three days a week for a total of eight weeks. Training consisted of maximal unilateral eccentric knee extensors actions performed at 180 °s-1. Maximal isometric knee extensor torque (MVC) and incremental RFD in successive 50 ms time-windows from the onset contraction were analysed in absolute terms (RFDINC) or when normalised relative to MVC (RFDREL). After eight weeks, TG demonstrated increases in MVC (28%), RFDINC (0-50 ms: 30%; 50-100 ms: 31%) and RFDREL (0-50 ms: 29%; 50-100 ms: 32%). Moreover, no changes in the late phase of incremental RFD were observed in TG. No changes were found in the CG. In summary, we have demonstrated, in active individuals, that a short period of resistance training performed with eccentric fast-velocity isokinetic muscle contractions is able to enhance RFDINC and RFDREL obtained at the early phase of rising joint torque.


Assuntos
Contração Isométrica/fisiologia , Força Muscular/fisiologia , Treinamento Resistido/métodos , Adulto , Humanos , Joelho/fisiologia , Masculino , Torque , Adulto Jovem
8.
Eur J Appl Physiol ; 113(9): 2301-11, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23680937

RESUMO

The aim of the study was to verify whether 8 weeks of resistance training employing maximal isokinetic eccentric (IERT) knee extensor actions would reduce the acute force loss observed after high-intensity treadmill running exercise. It was hypothesized that specific IERT would induce protective effects against muscle fatigue and ultrastructural damages, preventing or reducing the loss in mechanical muscle function after running. Subjects were tested before and after IERT protocol for maximal isometric, concentric and eccentric isokinetic knee extensor strength (60° and 180° s(-1)). In a second session, subjects performed treadmill running (~35 min) and the previously mentioned measurements were repeated immediately after running. Subsequently, subjects were randomized to training (n = 12) consisting of 24 sessions of maximal IERT knee extensors actions at 180° s(-1), or served as controls (n = 8). The effects of acute running-induced fatigue and training on isokinetic and isometric peak torque, and rate of force development (RFD) were investigated. Before IERT, running-induced eccentric torque loss at 180° s(-1) was -8 %, and RFD loss was -11 %. Longitudinal IERT led to reduced or absent acute running-induced losses in maximal IERT torque at 180° s(-1) (+2 %), being significantly reduced compared to before IERT (p < 0.05), however, RFD loss remained at -11 % (p > 0.05). In conclusion, IERT yields a reduced strength loss after high-intensity running workouts, which may suggest a protective effect against fatigue and/or morphological damages. However, IERT may not avoid reductions in explosive muscle actions. In turn, this may allow more intense training sessions to be performed, facilitating the adaptive response to running training.


Assuntos
Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Treinamento Resistido , Corrida/fisiologia , Adulto , Fenômenos Biomecânicos , Exercício Físico/fisiologia , Humanos , Joelho/fisiologia , Articulação do Joelho/fisiologia , Masculino , Contração Muscular/fisiologia , Força Muscular/fisiologia , Torque , Adulto Jovem
9.
Gait Posture ; 38(4): 894-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23706505

RESUMO

The aim of this study was to investigate the effect of unilateral balance training on the reactive recovery of balance for both trained and untrained limbs. Twenty-three subjects were randomly assigned to either a control group (CG) or a training group (TG). The latter performed six weeks of balance training for the right leg. The pre- and post-training measurements were based on single leg standing posture on a moveable force platform which moved 6 cm anteriorly. TG subjects were tested on the trained (TR) and untrained leg (UTR), whereas CG subjects were tested on the right leg (CTR). The center of pressure trajectory length (CPLEN) and average speed (CPSPD) as well as onsets of muscular activation and time to peak (EMGTP) from lower limb muscles were calculated and compared by a 2-way ANOVA (three legs×two training status). Muscular onsets were reduced after training for TR (∼19 ms, p<0.05) and UTR (∼17 ms, p<0.05) with no significant changes for CTR. No effects of training for CPLEN and medial-lateral CPSPD were found. Furthermore, the EMGTP of UTR was predominantly greater before training (∼17 ms, p<0.05). However, after training the EMGTP was similar among limbs. These results suggest that concomitant with improved balance recovery and neuromuscular reactions in TR, there is also a cross-education effect in UTR, which might be predominantly related to supraspinal adaptations shared between interconnected structures in the brain.


Assuntos
Adaptação Fisiológica/fisiologia , Músculo Esquelético/fisiologia , Modalidades de Fisioterapia , Equilíbrio Postural/fisiologia , Adulto , Eletromiografia , Humanos , Perna (Membro)/fisiologia , Masculino , Pressão , Resultado do Tratamento , Adulto Jovem
10.
Braz J Otorhinolaryngol ; 76(5): 605-10, 2010.
Artigo em Inglês, Português | MEDLINE | ID: mdl-20963344

RESUMO

UNLABELLED: With the universal hearing screening we can prevent auditory disorders in children. AIM: To characterize the program of neonatal auditory screening into a population of neonates. MATERIALS AND METHODS: longitudinal cohort study. We surveyed the clinic's database on neonatal auditory screening in the city of Porto Velho, Rondônia. RESULTS: Among the 6,889 newborns in the database, 5,700 (82.7%) passed and 1,189 (17.3%) failed the first screening. Of the group which failed 900 (75.7 %) returned for retesting. Among these, 15 (0.22 %) newborns had hearing loss confirmed. The most prevalent was neural hearing loss with 46.7% confirmed cases; they had hyperbilirubinemia as the most prevalent risk factor. CONCLUSION: hyperbilirubinemia was the most prevalent risk factor found in the group of hearing impaired children. The prevalence of hearing loss was of 2 in 1,000 newborns. It is important to highlight the relevant association between neural hearing loss caused by hyperbilirubinemia and sensorineural hearing loss of unknown causes.


Assuntos
Perda Auditiva/epidemiologia , Hiperbilirrubinemia Neonatal/epidemiologia , Triagem Neonatal , Brasil/epidemiologia , Feminino , Perda Auditiva/etiologia , Testes Auditivos/métodos , Testes Auditivos/estatística & dados numéricos , Humanos , Hiperbilirrubinemia Neonatal/complicações , Recém-Nascido , Masculino , Emissões Otoacústicas Espontâneas , Prevalência , Estudos Retrospectivos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA