Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Vaccine ; 42(3): 689-700, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38145911

RESUMO

In an effort to develop efficient vaccine formulations, the use of ordered mesoporous silica (SBA-15) as an antigen carrier has been investigated. SBA-15 has required properties such as high surface area and pore volume, including narrow pore size distribution to protect antigens inside its matrix. This study aimed to examine the impact of solvent removal methods, specifically freeze-drying and evaporation on the intrinsic properties of an immunogenic complex. The immunogenic complexes, synthesized and incorporated with BSA, were characterized by various physicochemical techniques. Small Angle X-ray Scattering measurements revealed the characteristic reflections associated to pure SBA-15, indicating the preservation of the silica mesostructured following BSA incorporation and the formation of BSA aggregates within the macropore region. Nitrogen Adsorption Isotherm measurements demonstrated a decrease in surface area and pore volume for all samples, indicating that the BSA was incorporated into the SBA-15 matrix. Fluorescence spectroscopy evidenced that the tryptophan residues in BSA inside SBA-15 or in solution displayed similar spectra, showing the preservation of the aromatic residues' environment. The Circular Dichroism spectra of BSA in both conditions suggest the preservation of its native secondary structure after the encapsulation process. The immunogenic analysis with the detection of anti-BSA IgG did not give any significant difference between the non-dried, freeze-dried or evaporated groups. However, all groups containing BSA and SBA-15 showed results almost three times higher than the groups with pure BSA (control group). These facts indicate that none of the BSA incorporation methods interfered with the immunogenicity of the complex. In particular, the freeze-dried process is regularly used in the pharmaceutical industry, therefore its adequacy to produce immunogenic complexes was proved Furthermore, the results showed that SBA-15 increased the immunogenic activity of BSA.


Assuntos
Dióxido de Silício , Vacinas , Dióxido de Silício/química
2.
Mater Horiz ; 10(12): 5822-5834, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37842783

RESUMO

In recent years, perovskite nanocrystal superlattices have been reported with collective optical phenomena, offering a promising platform for both fundamental science studies and device engineering. In this same avenue, superlattices of perovskite nanoplates can be easily prepared on different substrates, and they too present an ensemble optical response. However, the self-assembly and optical properties of these aggregates in solvents have not been reported to date. Here, we report on the conditions for this self-assembly to occur and show a simple strategy to induce the formation of these nanoplate stacks in suspension in different organic solvents. We combined wide- and small-angle X-ray scattering and scanning transmission electron microscopy to evaluate CsPbBr3 and CsPbI3 perovskite nanoplates with different thickness distributions. We observed the formation of these stacks by changing the concentration of nanoplates and the viscosity of the colloidal suspensions, without the need for antisolvent addition. We found that, in hexane, the concentration for the formation of the stacks is rather high and approximately 80 mg mL-1. In contrast, in decane, dodecane, and hexadecane, we observe a much easier self-assembly of the nanoplates, presenting a clear correlation between the degree of aggregation and viscosity. We, then, discuss the impact of the self-assembly of perovskite nanoplates on Förster resonant energy transfer. Our predictions suggest an energy transfer efficiency higher than 50% for all the donor-acceptor systems evaluated. In particular, we demonstrate how the aggregation of these particles in hexadecane induces FRET for CsPbBr3 nanowires. For the n = 2 nanowires (donor) to the n = 3 nanowires (acceptor), the FRET rate was found to be 4.1 ns-1, with an efficiency of 56%, in agreement with our own predictions.

3.
PLoS One ; 17(8): e0273292, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36040917

RESUMO

BACKGROUND: Despite lipid-lowering and antiplatelet therapy, the pattern of residual lipoproteins seems relevant to long-term cardiovascular outcomes. This study aims to evaluate the effects of combined therapies, commonly used in subjects with acute myocardial infarction, in the quality of low-density lipoprotein (LDL) particles. METHODS: Prospective, open-label trial, included patients with acute myocardial infarction. Patients were randomized to antiplatelet treatment (ticagrelor or clopidogrel) and subsequently to lipid-lowering therapy (rosuvastatin or simvastatin/ezetimibe) and were followed up for six months. Nonlinear optical properties of LDL samples were examined by Gaussian laser beam (Z-scan) to verify the oxidative state of these lipoproteins, small angle X-ray scattering (SAXS) to analyze structural changes on these particles, dynamic light scattering (DLS) to estimate the particle size distribution, ultra violet (UV)-visible spectroscopy to evaluate the absorbance at wavelength 484 nm (typical from carotenoids), and polyacrylamide gel electrophoresis (Lipoprint) to analyze the LDL subfractions. RESULTS: Simvastatin/ezetimibe with either clopidogrel or ticagrelor was associated with less oxidized LDL, and simvastatin/ezetimibe with ticagrelor to lower cholesterol content in the atherogenic subfractions of LDL, while rosuvastatin with ticagrelor was the only combination associated with increase in LDL size. CONCLUSIONS: The quality of LDL particles was influenced by the antiplatelet/lipid-lowering strategy, with ticagrelor being associated with the best performance with both lipid-lowering therapies. Trial registration: NCT02428374.


Assuntos
Anticolesterolemiantes , Inibidores de Hidroximetilglutaril-CoA Redutases , Infarto do Miocárdio , Anticolesterolemiantes/efeitos adversos , Clopidogrel , Ezetimiba/uso terapêutico , Humanos , Lipoproteínas , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/tratamento farmacológico , Estudos Prospectivos , Rosuvastatina Cálcica/uso terapêutico , Espalhamento a Baixo Ângulo , Sinvastatina/uso terapêutico , Ticagrelor , Difração de Raios X
4.
Chemosphere ; 287(Pt 1): 132023, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34461335

RESUMO

The photocatalytic activity of TiO2 nanoparticles (NPs) supported on mesoporous silica SBA-15 (TiO2/SBA-15) was evaluated for the photodegradation of sulfadiazine (SDZ), as target contaminant of emerging concern (CEC), using either pure water solutions (PW) or a real secondary urban wastewater (UWW) spiked with SDZ. For this purpose, TiO2/SBA-15 samples with 10, 20 and 30% TiO2 (w/w) were prepared by the sol-gel post synthetic method on pre-formed SBA-15, using titanium (IV) isopropoxide as a precursor. The TiO2/SBA-15 materials were characterized by HRTEM, SAXS and XRD, nitrogen adsorption isotherms and UV-vis diffuse reflectance spectroscopy. TiO2 NPs were shown to be attached onto the external surface, decorating the SBA-15 particles. The TiO2/SBA-15 catalysts were active in SDZ photodegradation using the annular FluHelik photoreactor, when irradiated with UVA light. The 30% TiO2/SBA-15 sample presented the best performance in optimization tests performed using PW, and it was further used for the tests with UWW. The photocatalytic activity of 30% TiO2/SBA-15 was higher (56% SDZ degradation) than that of standard TiO2-P25 (32% SDZ degradation) in the removal of SDZ spiked in the UWW ([SDZ] = 2 mg L-1). The photodegradation of SDZ with 30% TiO2/SBA-15 eached 90% for UWW spiked with a lower SDZ concentration ([SDZ] = 40 µg L-1). Aside of SDZ, a suit of 65 other CECs were also identified in the UWW sample using LC-MS spectrometry. A fast-screening test showed the heterogeneous photocatalytic system was able to remove most of the detected CECs from UWW, by either adsorption and/or photocatalysis.


Assuntos
Dióxido de Silício , Águas Residuárias , Espalhamento a Baixo Ângulo , Difração de Raios X
5.
Front Bioeng Biotechnol ; 9: 679128, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604182

RESUMO

Photodynamic therapy (PDT) is a potential non-invasive approach for application in oncological diseases, based on the activation of a photosensitizer (PS) by light at a specific wavelength in the presence of molecular oxygen to produce reactive oxygen species (ROS) that trigger the death tumor cells. In this context, porphyrins are interesting PS because they are robust, have high chemical, photo, thermal, and oxidative stability, and can generate singlet oxygen (1O2). However, porphyrins exhibit low solubility and a strong tendency to aggregate in a biological environment which limits their clinical application. To overcome these challenges, we developed hybrid nanostructures to immobilize 5,10,15,20-tetrakis[(4-carboxyphenyl) thio-2,3,5,6-tetrafluorophenyl] (P), a new third-generation PS. The biological effect of this system was evaluated against bladder cancer (BC) cells with or without light exposition. The nanostructure composed of lipid carriers coated by porphyrin-chitosan (P-HNP), presented a size of ca. 130 nm and low polydispersity (ca. 0.25). The presence of the porphyrin-chitosan (P-chitosan) on lipid nanoparticle surfaces increased the nanoparticle size, changed the zeta potential to positive, decreased the recrystallization index, and increased the thermal stability of nanoparticles. Furthermore, P-chitosan incorporation on nanoparticles increased the stability and enhanced the self-organization of the system and the formation of spherical structures, as observed by small-angle X-ray scattering (SAXS) analysis. Furthermore, the immobilization process maintained the P photoactivity and improved the photophysical properties of PS, minimizing its aggregation in the cell culture medium. In the photoinduction assays, the P-HNP displayed high phototoxicity with IC50 3.2-folds lower than free porphyrin. This higher cytotoxic effect can be correlated to the high cellular uptake of porphyrin immobilized, as observed by confocal images. Moreover, the coated nanoparticles showed mucoadhesive properties interesting to its application in vivo. Therefore, the physical and chemical properties of nanoparticles may be relevant to improve the porphyrin photodynamic activity in BC cells.

6.
Biophys J ; 120(17): 3664-3675, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34310942

RESUMO

Na+/Ca2+ exchangers (NCXs) are secondary active transporters that couple the translocation of Na+ with the transport of Ca2+ in the opposite direction. The exchanger is an essential Ca2+ extrusion mechanism in excitable cells. It consists of a transmembrane domain and a large intracellular loop that contains two Ca2+-binding domains, CBD1 and CBD2. The two CBDs are adjacent to each other and form a two-domain Ca2+ sensor called CBD12. Binding of intracellular Ca2+ to CBD12 activates the NCX but inhibits the NCX of Drosophila, CALX. NMR spectroscopy and SAXS studies showed that CALX and NCX CBD12 constructs display significant interdomain flexibility in the apo state but assume rigid interdomain arrangements in the Ca2+-bound state. However, detailed structure information on CBD12 in the apo state is missing. Structural characterization of proteins formed by two or more domains connected by flexible linkers is notoriously challenging and requires the combination of orthogonal information from multiple sources. As an attempt to characterize the conformational ensemble of CALX-CBD12 in the apo state, we applied molecular dynamics (MD) simulations, NMR (1H-15N residual dipolar couplings), and small-angle x-ray scattering (SAXS) data in a combined strategy to select an ensemble of conformations in agreement with the experimental data. This joint approach demonstrated that CALX-CBD12 preferentially samples closed conformations, whereas the wide-open interdomain arrangement characteristic of the Ca2+-bound state is less frequently sampled. These results are consistent with the view that Ca2+ binding shifts the CBD12 conformational ensemble toward extended conformers, which could be a key step in the NCXs' allosteric regulation mechanism. This strategy, combining MD with NMR and SAXS, provides a powerful approach to select ensembles of conformations that could be applied to other flexible multidomain systems.


Assuntos
Cálcio , Simulação de Dinâmica Molecular , Cálcio/metabolismo , Conformação Proteica , Espalhamento a Baixo Ângulo , Trocador de Sódio e Cálcio/metabolismo , Difração de Raios X
7.
Biochimie ; 181: 145-153, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33333169

RESUMO

Snakebite envenomation has been categorized by World Health Organization as a category A neglected tropical disease, since it causes chronic psychological disorders, physical disablement and death. Ophidian accidents may cause local myonecrosis that cause drastic sequelae, which are not efficiently neutralized via serum therapy. Phospholipase A2-like (PLA2-like) myotoxins have a major role in the local effects caused by several snake venoms. We previously demonstrated that chicoric acid (CA) is an efficient inhibitor of the BthTX-I myotoxin and solved the X-ray structure of complex. Herein, we assess the oligomeric behavior of the BthTX-I/CA complex in solution under different physical-chemical conditions and using toxin obtained by two different biochemical methodologies to fully elucidate structural bases of inhibition of myotoxins by CA. We demonstrated the ability of PLA2-like proteins to form different oligomeric assemblies in the presence of certain inhibitors, which can also be modulated by buffer polarity change. In the presence of ethanol, BthTX-I/CA remains predominantly in a monomeric conformation, which prevents it from being in its active form (dimeric conformation). In contrast, in the absence of ethanol, the tetramer assembly was observed, which hid key regions of the protein responsible for docking and disruption of the muscle membrane. Therefore, the "plasticity" of these proteins with regard to their abilities to form oligomeric assemblies is a key issue for the future development of therapeutic agents to complement of serum therapy.


Assuntos
Ácidos Cafeicos/química , Venenos de Crotalídeos/química , Fosfolipases A2/química , Multimerização Proteica , Succinatos/química , Venenos de Crotalídeos/antagonistas & inibidores
8.
Langmuir ; 36(48): 14793-14801, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33210929

RESUMO

The aggregation of two short peptides, [RF] and [RF]4 (where R = arginine and F = phenylalanine), at dipalmitoylphosphatidylcholine (DPPC) model membranes was investigated at the air-water interface using the Langmuir technique and vesicles in aqueous solutions. The molar ratio of the peptide and lipid components was varied to provide insights into the peptide-membrane interactions, which might be related to their cytotoxicity. Both peptides exhibited affinity to the DPPC membrane interface and rapidly adopted ß-sheet-rich structures upon adsorption onto the surface of the zwitterionic membrane. Results from adsorption isotherm and small-angle X-ray scattering experiments showed changes in the structural and thermodynamic parameters of the membrane with increasing peptide concentration. Using atomic force microscopy, we showed the appearance of pores through the bilayer membranes and peptide aggregation at different interfaces, suggesting that the hydrophobic residues might have an effect on both pore size and layer structure, facilitating the membrane disruption and leading to different cytotoxicity effects.


Assuntos
1,2-Dipalmitoilfosfatidilcolina , Peptídeos , Adsorção , Amiloide , Bicamadas Lipídicas , Peptídeos/toxicidade , Termodinâmica
9.
Sci Rep ; 10(1): 16252, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004851

RESUMO

The activation process of phospholipase A2-like (PLA2-like) toxins is a key step in their molecular mechanism, which involves oligomeric changes leading to the exposure of specific sites. Few studies have focused on the characterization of allosteric activators and the features that distinguish them from inhibitors. Herein, a comprehensive study with the BthTX-I toxin from Bothrops jararacussu venom bound or unbound to α-tocopherol (αT) was carried out. The oligomerization state of BthTX-I bound or unbound to αT in solution was studied and indicated that the toxin is predominantly monomeric but tends to oligomerize when complexed with αT. In silico molecular simulations showed the toxin presents higher conformational changes in the absence of αT, which suggests that it is important to stabilize the structure of the toxin. The transition between the two states (active/inactive) was also studied, showing that only the unbound BthTX-I system could migrate to the inactive state. In contrast, the presence of αT induces the toxin to leave the inactive state, guiding it towards the active state, with more regions exposed to the solvent, particularly its active site. Finally, the structural determinants necessary for a molecule to be an inhibitor or activator were analyzed in light of the obtained results.


Assuntos
Bothrops , Venenos de Crotalídeos/química , Regulação Alostérica , Animais , Simulação por Computador , Difusão Dinâmica da Luz , Simulação de Dinâmica Molecular , Fosfolipases A2/química , Multimerização Proteica
10.
J Bacteriol ; 202(21)2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32817098

RESUMO

Multidrug resistance (MDR) is a serious threat to public health, making the development of new antimicrobials an urgent necessity. Pyocins are protein antibiotics produced by Pseudomonas aeruginosa strains to kill closely related cells during intraspecific competition. Here, we report an in-depth biochemical, microbicidal, and structural characterization of a new S-type pyocin, named S8. Initially, we described the domain organization and secondary structure of S8. Subsequently, we observed that a recombinant S8 composed of the killing subunit in complex with the immunity (ImS8) protein killed the strain PAO1. Furthermore, mutation of a highly conserved glutamic acid to alanine (Glu100Ala) completely inhibited this antimicrobial activity. The integrity of the H-N-H motif is probably essential in the killing activity of S8, as Glu100 is a highly conserved residue of this motif. Next, we observed that S8 is a metal-dependent endonuclease, as EDTA treatment abolished its ability to cleave supercoiled pUC18 plasmid. Supplementation of apo S8 with Ni2+ strongly induced this DNase activity, whereas Mn2+ and Mg2+ exhibited moderate effects and Zn2+ was inhibitory. Additionally, S8 bound Zn2+ with a higher affinity than Ni2+ and the Glu100Ala mutation decreased the affinity of S8 for these metals, as shown by isothermal titration calorimetry (ITC). Finally, we describe the crystal structure of the Glu100Ala S8 DNase-ImS8 complex at 1.38 Å, which gave us new insights into the endonuclease activity of S8. Our results reinforce the possibility of using pyocin S8 as an alternative therapy for infections caused by MDR strains, while leaving commensal human microbiota intact.IMPORTANCE Pyocins are proteins produced by Pseudomonas aeruginosa strains that participate in intraspecific competition and host-pathogen interactions. They were first described in the 1950s and since then have gained attention as possible new antibiotics. However, there is still only scarce information about the molecular mechanisms by which these molecules induce cell death. Here, we show that the metal-dependent endonuclease activity of pyocin S8 is involved with its antimicrobial action against strain PAO1. We also describe that this killing activity is dependent on a conserved Glu residue within the H-N-H motif. The potency and selectivity of pyocin S8 toward a narrow spectrum of P. aeruginosa strains make this protein an attractive antimicrobial alternative for combatting MDR strains, while leaving commensal human microbiota intact.


Assuntos
Antibacterianos/química , Desoxirribonuclease I/química , Pseudomonas aeruginosa/metabolismo , Piocinas/química , Motivos de Aminoácidos , Ácido Glutâmico/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA