Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Intensive Care Med Exp ; 12(1): 2, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38194181

RESUMO

BACKGROUND: Hemorrhagic shock (HS), which causes insufficient tissue perfusion, can result in multiple organ failure (MOF) and death. This study aimed to evaluate whether doxycycline (DOX) protects cardiovascular, kidney, and liver tissue from damage in a rat model of HS. Immediately before the resuscitation, DOX (10 mg/kg; i.v.) was administered, and its protective effects were assessed 24 h later. Mean arterial pressure, renal blood flow, heart rate, vasoactive drug response, and blood markers such as urea, creatinine, AST, ALT, CPK, CPR, and NOx levels were determined. RESULTS: We showed that DOX has a significant effect on renal blood flow and on urea, creatinine, AST, ALT, CPK, and NOx. Morphologically, DOX reduced the inflammatory process in the liver tissue. CONCLUSIONS: We conclude that DOX protects the liver and kidney against injury and dysfunction in a HS model and could be a strategy to reduce organ damage associated with ischemia-and-reperfusion injury.

2.
J Cell Biochem ; 123(7): 1133-1147, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35652521

RESUMO

SUMOylation is described as a posttranslational protein modification (PTM) that is involved in the pathophysiological processes underlying several conditions related to ischemia- and reperfusion-induced damage. Increasing evidence suggests that, under low oxygen levels, SUMOylation might be part of an endogenous mechanism, which is triggered by injury to protect cells within the central nervous system. However, the role of ischemia-induced SUMOylation in the periphery is still unclear. This article summarizes the results of recent studies regarding SUMOylation profiles in several diseases characterized by impaired blood flow to the cardiorenal, gastrointestinal, and respiratory systems. Our review shows that although ischemic injury per se does not always increase SUMOylation levels, as seen in strokes, it seems that in most cases the positive modulation of protein SUMOylation after peripheral ischemia might be a protective mechanism. This complex relationship warrants further investigation, as the role of SUMOylation during hypoxic conditions differs from organ to organ and is still not fully elucidated.


Assuntos
Processamento de Proteína Pós-Traducional , Sumoilação , Perfusão
3.
Artigo em Inglês | MEDLINE | ID: mdl-33727938

RESUMO

Several secondary metabolites have been isolated from Zornia brasiliensis (Leguminosae), mainly flavonoids. These compounds are known for many pharmacological actions, such as antispasmodic and antidiarrheal. Therefore, we evaluated the antidiarrheal effect of the ethanolic extract obtained from Zornia brasiliensis aerial parts (ZB-EtOHAP), as well as its underlying mechanisms. Castor-oil-induced diarrhea, fluid accumulation, and intestinal transit (normal and castor oil induced) were performed to assess the antidiarrheal, antisecretory, and antipropulsive activities of the extract. The involvement of opioid and adrenergic pathways was also investigated. ZB-EtOHAP inhibited, in a dose-dependent manner, both total defecation frequency and the number of watery stools. The extract showed no effect on fluid accumulation or normal intestinal transit. On the other hand, when the animals were pretreated with castor oil, the extract decreased the distance traveled by the marker in the small intestine. Investigation of the involvement of opioid and adrenergic systems showed that the pharmacological potency of the extract did not change in the presence of naloxone, but it was reduced in the presence of yohimbine. The data indicate that Zornia brasiliensis has an antidiarrheal effect due to inhibition of the intestinal motility through adrenergic pathway activation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA