Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Clin Auton Res ; 34(3): 363-374, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38878143

RESUMO

PURPOSE: Central and peripheral chemoreceptors are hypersensitized in patients with heart failure with reduced ejection fraction. Whether this autonomic alteration occurs in patients with heart failure with preserved ejection fraction (HFpEF) remains little known. We test the hypothesis that the central and peripheral chemoreflex control of muscle sympathetic nerve activity (MSNA) is altered in HFpEF. METHODS: Patients aged 55-80 years with symptoms of heart failure, body mass index ≤ 35 kg/m2, left ventricular ejection fraction > 50%, left atrial volume index > 34 mL/m2, left ventricular early diastolic filling velocity and early diastolic tissue velocity of mitral annulus ratio (E/e' index) ≥ 13, and BNP levels > 35 pg/mL were included in the study (HFpEF, n = 9). Patients without heart failure with preserved ejection fraction (non-HFpEF, n = 9), aged-paired, were also included in the study. Peripheral chemoreceptors stimulation (10% O2 and 90% N2, with CO2 titrated) and central chemoreceptors stimulation (7% CO2 and 93% O2) were conducted for 3 min. MSNA was evaluated by microneurography technique, and forearm blood flow (FBF) by venous occlusion plethysmography. RESULTS: During hypoxia, MSNA responses were greater (p < 0.001) and FBF responses were lower in patients with HFpEF (p = 0.006). Likewise, MSNA responses during hypercapnia were higher (p < 0.001) and forearm vascular conductance (FVC) levels were lower (p = 0.030) in patients with HFpEF. CONCLUSIONS: Peripheral and central chemoreflex controls of MSNA are hypersensitized in patients with HFpEF, which seems to contribute to the increase in MSNA in these patients. In addition, peripheral and central chemoreceptors stimulation in patients with HFpEF causes muscle vasoconstriction.


Assuntos
Células Quimiorreceptoras , Insuficiência Cardíaca , Volume Sistólico , Humanos , Idoso , Masculino , Feminino , Insuficiência Cardíaca/fisiopatologia , Pessoa de Meia-Idade , Volume Sistólico/fisiologia , Células Quimiorreceptoras/fisiologia , Idoso de 80 Anos ou mais , Sistema Nervoso Simpático/fisiopatologia , Músculo Esquelético/fisiopatologia
2.
J Vet Diagn Invest ; 34(1): 164-166, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34697960

RESUMO

Brucella ovis is the causative agent of ovine brucellosis, which is an important infectious disease in sheep farming worldwide and is responsible for economic losses because of its negative effect on the reproductive system of rams and ewes. Serologic tests are the main tools for detection of infection; however, these tests commonly yield a high frequency of false-negative results. We compared 2 serologic tests, agar gel immunodiffusion (AGID) and ELISA, for the detection of anti-B. ovis antibodies in naturally infected sheep. Of the 728 serum samples analyzed, 0.3% were positive by AGID and 9.2% by ELISA. Positive results were obtained for different animals and flocks. There was no statistical difference between the detection frequency of the 2 methods (p = 0.674), and the kappa test indicated low concordance (κ = 0.005). The lack of agreement between results obtained using AGID and ELISA, associated with the absence of clinical signs, makes it difficult to detect ovine brucellosis efficiently, and demonstrates the need for effective tests for the definitive detection of B. ovis infection.


Assuntos
Brucella ovis , Brucelose , Doenças dos Ovinos , Animais , Brucelose/diagnóstico , Brucelose/veterinária , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Masculino , Ovinos , Doenças dos Ovinos/diagnóstico , Carneiro Doméstico
3.
Front Neurosci ; 15: 669535, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34531714

RESUMO

Sympathetic hyperactivation and baroreflex dysfunction are hallmarks of heart failure with reduced ejection fraction (HFrEF). However, it is unknown whether the progressive loss of phasic activity of sympathetic nerve bursts is associated with baroreflex dysfunction in HFrEF patients. Therefore, we investigated the association between the oscillatory pattern of muscle sympathetic nerve activity (LFMSNA/HFMSNA) and the gain and coupling of the sympathetic baroreflex function in HFrEF patients. In a sample of 139 HFrEF patients, two groups were selected according to the level of LFMSNA/HFMSNA index: (1) Lower LFMSNA/HFMSNA (lower terciles, n = 46, aged 53 ± 1 y) and (2) Higher LFMSNA/HFMSNA (upper terciles, n = 47, aged 52 ± 2 y). Heart rate (ECG), arterial pressure (oscillometric method), and muscle sympathetic nerve activity (microneurography) were recorded for 10 min in patients while resting. Spectral analysis of muscle sympathetic nerve activity was conducted to assess the LFMSNA/HFMSNA, and cross-spectral analysis between diastolic arterial pressure, and muscle sympathetic nerve activity was conducted to assess the sympathetic baroreflex function. HFrEF patients with lower LFMSNA/HFMSNA had reduced left ventricular ejection fraction (26 ± 1 vs. 29 ± 1%, P = 0.03), gain (0.15 ± 0.03 vs. 0.30 ± 0.04 a.u./mmHg, P < 0.001) and coupling of sympathetic baroreflex function (0.26 ± 0.03 vs. 0.56 ± 0.04%, P < 0.001) and increased muscle sympathetic nerve activity (48 ± 2 vs. 41 ± 2 bursts/min, P < 0.01) and heart rate (71 ± 2 vs. 61 ± 2 bpm, P < 0.001) compared with HFrEF patients with higher LFMSNA/HFMSNA. Further analysis showed an association between the LFMSNA/HFMSNA with coupling of sympathetic baroreflex function (R = 0.56, P < 0.001) and left ventricular ejection fraction (R = 0.23, P = 0.02). In conclusion, there is a direct association between LFMSNA/HFMSNA and sympathetic baroreflex function and muscle sympathetic nerve activity in HFrEF patients. This finding has clinical implications, because left ventricular ejection fraction is less in the HFrEF patients with lower LFMSNA/HFMSNA.

4.
ESC Heart Fail ; 8(5): 3845-3854, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34184426

RESUMO

AIMS: We tested the hypothesis that the effects of combined inspiratory muscle training and aerobic exercise training (IMT + AET) on muscle sympathetic nerve activity (MSNA) and forearm blood flow in patients with heart failure with reduced ejection fraction are more pronounced than the effects of AET alone. METHODS AND RESULTS: Patients aged 30-70 years, New York Heart Association Functional Class II-III, and left ventricular ejection fraction ≤40% were randomly assigned to four groups: IMT (n = 11), AET (n = 12), IMT + AET (n = 9), and non-training (NT; n = 10). MSNA was recorded using microneurography. Forearm blood flow was measured by venous occlusion plethysmography and inspiratory muscle strength by maximal inspiratory pressure. IMT consisted of 30 min sessions, five times a week, for 4 months. Moderate AET consisted of 60 min sessions, three times a week for 4 months. AET (-10 ± 2 bursts/min, P = 0.03) and IMT + AET (-13 ± 4 bursts/min, P = 0.007) reduced MSNA. These responses in MSNA were not different between AET and IMT + AET groups. IMT (0.22 ± 0.08 mL/min/100 mL, P = 0.03), AET (0.27 ± 0.09 mL/min/100 mL, P = 0.01), and IMT + AET (0.35 ± 0.12 mL/min/100 mL, P = 0.008) increased forearm blood flow. No differences were found between groups. AET (3 ± 1 mL/kg/min, P = 0.006) and IMT + AET (4 ± 1 mL/kg/min, P = 0.001) increased peak oxygen consumption. These responses were similar between these groups. IMT (20 ± 3 cmH2 O, P = 0.005) and IMT + AET (18 ± 3 cmH2 O, P = 0.01) increased maximal inspiratory pressure. No significant changes were observed in the NT group. CONCLUSIONS: IMT + AET causes no additive effects on neurovascular control in patients with heart failure with reduced ejection fraction compared with AET alone. These findings may be, in part, because few patients had inspiratory muscle weakness.


Assuntos
Insuficiência Cardíaca , Função Ventricular Esquerda , Exercício Físico , Insuficiência Cardíaca/terapia , Humanos , Músculos , Volume Sistólico
6.
J Cachexia Sarcopenia Muscle ; 11(1): 89-102, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31743617

RESUMO

BACKGROUND: The exercise intolerance in chronic heart failure with reduced ejection fraction (HFrEF) is mostly attributed to alterations in skeletal muscle. However, the mechanisms underlying the skeletal myopathy in patients with HFrEF are not completely understood. We hypothesized that (i) aerobic exercise training (AET) and inspiratory muscle training (IMT) would change skeletal muscle microRNA-1 expression and downstream-associated pathways in patients with HFrEF and (ii) AET and IMT would increase leg blood flow (LBF), functional capacity, and quality of life in these patients. METHODS: Patients age 35 to 70 years, left ventricular ejection fraction (LVEF) ≤40%, New York Heart Association functional classes II-III, were randomized into control, IMT, and AET groups. Skeletal muscle changes were examined by vastus lateralis biopsy. LBF was measured by venous occlusion plethysmography, functional capacity by cardiopulmonary exercise test, and quality of life by Minnesota Living with Heart Failure Questionnaire. All patients were evaluated at baseline and after 4 months. RESULTS: Thirty-three patients finished the study protocol: control (n = 10; LVEF = 25 ± 1%; six males), IMT (n = 11; LVEF = 31 ± 2%; three males), and AET (n = 12; LVEF = 26 ± 2%; seven males). AET, but not IMT, increased the expression of microRNA-1 (P = 0.02; percent changes = 53 ± 17%), decreased the expression of PTEN (P = 0.003; percent changes = -15 ± 0.03%), and tended to increase the p-AKTser473 /AKT ratio (P = 0.06). In addition, AET decreased HDAC4 expression (P = 0.03; percent changes = -40 ± 19%) and upregulated follistatin (P = 0.01; percent changes = 174 ± 58%), MEF2C (P = 0.05; percent changes = 34 ± 15%), and MyoD expression (P = 0.05; percent changes = 47 ± 18%). AET also increased muscle cross-sectional area (P = 0.01). AET and IMT increased LBF, functional capacity, and quality of life. Further analyses showed a significant correlation between percent changes in microRNA-1 and percent changes in follistatin mRNA (P = 0.001, rho = 0.58) and between percent changes in follistatin mRNA and percent changes in peak VO2 (P = 0.004, rho = 0.51). CONCLUSIONS: AET upregulates microRNA-1 levels and decreases the protein expression of PTEN, which reduces the inhibitory action on the PI3K-AKT pathway that regulates the skeletal muscle tropism. The increased levels of microRNA-1 also decreased HDAC4 and increased MEF2c, MyoD, and follistatin expression, improving skeletal muscle regeneration. These changes associated with the increase in muscle cross-sectional area and LBF contribute to the attenuation in skeletal myopathy, and the improvement in functional capacity and quality of life in patients with HFrEF. IMT caused no changes in microRNA-1 and in the downstream-associated pathway. The increased functional capacity provoked by IMT seems to be associated with amelioration in the respiratory function instead of changes in skeletal muscle. ClinicalTrials.gov (Identifier: NCT01747395).


Assuntos
Insuficiência Cardíaca/terapia , Inalação/fisiologia , MicroRNAs/metabolismo , Qualidade de Vida/psicologia , Volume Sistólico/fisiologia , Adulto , Idoso , Exercício Físico/fisiologia , Feminino , Insuficiência Cardíaca/genética , Humanos , Masculino , Pessoa de Meia-Idade
7.
Lipids ; 54(6-7): 381-388, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31141200

RESUMO

Exercise training not only improves the plasma lipid profile but also reduces risk of developing coronary heart disease. We investigate whether plasma lipids and high density lipoprotein (HDL) metabolism are affected by aerobic training and whether the high-density lipoprotein cholesterol (HDL-C) levels at baseline influence exercise-induced changes in HDL. Seventy-one male sedentary volunteers were evaluated and allocated in two subgroups, according to the HLD-C levels (< or >40 mg/dL). Participants underwent an 18-week aerobic training period. Blood was sampled before and after training for biochemical analysis. Plasma lipids, apolipoproteins, HDL diameter, and VO2 peak were determined. Lipid transfers to HDL were determined in vitro by incubating plasma samples with a donor lipid artificial nanoemulsion. After the 18-week period of aerobic training, the VO2 peak increased, while the mean body mass index (BMI) decreased. HDL-C concentration was higher after the training period, but low-density lipoprotein cholesterol (LDL-C) and non-HDL-C did not change. The transfer of esterified cholesterol and phospholipids was greater after exercise training, but the triacylglycerol and unesterified cholesterol transfers were unchanged. The HDL particle diameter increased after aerobic training in all participants. When the participants were separated in low-HDL and normal-HDL groups, the postaerobic exercise increment in HDL-C was higher in the low-HDL group, while the transfer of esterified cholesterol was lower. In conclusion, aerobic exercise training increases the lipid transfers to HDL, as measured by an in vitro method, which possibly contributes to the classical elevation of the HDL-C associated with training.


Assuntos
Colesterol/metabolismo , Exercício Físico , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Adulto , Colesterol/sangue , Humanos , Lipoproteínas HDL/sangue , Masculino , Tamanho da Partícula , Adulto Jovem
8.
New Phytol ; 218(1): 81-93, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29315591

RESUMO

Feruloylation of arabinoxylan (AX) in grass cell walls is a key determinant of recalcitrance to enzyme attack, making it a target for improvement of grass crops, and of interest in grass evolution. Definitive evidence on the genes responsible is lacking so we studied a candidate gene that we identified within the BAHD acyl-CoA transferase family. We used RNA interference (RNAi) silencing of orthologs in the model grasses Setaria viridis (SvBAHD01) and Brachypodium distachyon (BdBAHD01) and determined effects on AX feruloylation. Silencing of SvBAHD01 in Setaria resulted in a c. 60% decrease in AX feruloylation in stems consistently across four generations. Silencing of BdBAHD01 in Brachypodium stems decreased feruloylation much less, possibly due to higher expression of functionally redundant genes. Setaria SvBAHD01 RNAi plants showed: no decrease in total lignin, approximately doubled arabinose acylated by p-coumarate, changes in two-dimensional NMR spectra of unfractionated cell walls consistent with biochemical estimates, no effect on total biomass production and an increase in biomass saccharification efficiency of 40-60%. We provide the first strong evidence for a key role of the BAHD01 gene in AX feruloylation and demonstrate that it is a promising target for improvement of grass crops for biofuel, biorefining and animal nutrition applications.


Assuntos
Biomassa , Parede Celular/metabolismo , Coenzima A-Transferases/genética , Ácidos Cumáricos/metabolismo , Genes de Plantas , Setaria (Planta)/enzimologia , Setaria (Planta)/genética , Supressão Genética , Ácidos/metabolismo , Brachypodium/genética , Metabolismo dos Carboidratos , Coenzima A-Transferases/metabolismo , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Hidrólise , Lignina/metabolismo , Espectroscopia de Ressonância Magnética , Tamanho do Órgão , Filogenia , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Sementes/anatomia & histologia , Sementes/crescimento & desenvolvimento , Transcriptoma/genética , Xilanos/metabolismo
9.
Front Plant Sci ; 8: 865, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28642761

RESUMO

Acidic soils are distributed worldwide, predominantly in tropical and subtropical areas, reaching around 50% of the arable soil. This type of soil strongly reduces crop production, mainly because of the presence of aluminum, which has its solubility increased at low pH levels. A well-known physiological mechanism used by plants to cope with Al stress involves activation of membrane transporters responsible for organic acid anions secretion from the root apex to the rhizosphere, which chelate Al, preventing its absorption by roots. In sorghum, a membrane transporter gene belonging to multidrug and toxic compound extrusion (MATE) family was identified and characterized as an aluminum-activated citrate transporter gene responsible for Al tolerance in this crop. Setaria viridis is an emerging model for C4 species and it is an important model to validate some genes for further C4 crops transformation, such as sugarcane, maize, and wheat. In the present work, Setaria viridis was used as a model plant to overexpress a newly identified MATE gene from Brachypodium distachyon (BdMATE), closely related to SbMATE, for aluminum tolerance assays. Transgenic S. viridis plants overexpressing a BdMATE presented an improved Al tolerance phenotype, characterized by sustained root growth and exclusion of aluminum from the root apex in transgenic plants, as confirmed by hematoxylin assay. In addition, transgenic plants showed higher root citrate exudation into the rhizosphere, suggesting that Al tolerance improvement in these plants could be related to the chelation of the metal by the organic acid anion. These results suggest that BdMATE gene can be used to transform C4 crops of economic importance with improved aluminum tolerance.

10.
Pediatr Cardiol ; 38(5): 981-990, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28500413

RESUMO

Central factors negatively affect the functional capacity of Fontan patients (FP), but "non-cardiac" factors, such as pulmonary function, may contribute to their exercise intolerance. We studied the pulmonary function in asymptomatic FP and its correlations with their functional capacity. Pulmonary function and cardiopulmonary exercise tests were performed in a prospective study of 27 FP and 27 healthy controls (HC). Cardiovascular magnetic resonance was used to evaluate the Fontan circulation. The mean age at tests, the mean age at surgery, and the median follow-up time of FP were 20(±6), 8(±3), and 11(8-17) years, respectively. Dominant ventricle ejection fraction was within normal range. The mean of peak VO2 expressed in absolute values (L/min), the relative values to body weight (mL/kg/min), and their predicted values were lower in FP compared with HC: 1.69 (±0.56) vs 2.81 (±0.77) L/min; 29.9 (±6.1) vs 41.5 (±9.3) mL/kg/min p < 0.001 and predicted VO2 Peak [71% (±14) vs 100% (±20) p < 0.001]. The absolute and predicted values of the forced vital capacity (FVC), forced expiratory volume in one second (FEV1), inspiratory capacity (IC), total lung capacity (TLC), diffusion capacity of carbon monoxide of the lung (DLCO), maximum inspiratory pressure (MIP), and sniff nasal inspiratory pressure (SNIP) were also significantly lower in the Fontan population compared to HC. An increased risk of restrictive ventilatory pattern was found in patients with postural deviations (OD:10.0, IC:1.02-97.5, p = 0.042). There was a strong correlation between pulmonary function and absolute peak VO2 [FVC (r = 0.86, p < 0.001); FEV1 (r = 0.83, p < 0.001); IC (r = 0.84, p < 0.001); TLC (r = 0.79, p < 0.001); and DLCO (r = 0.72, p < 0.001). The strength of the inspiratory muscles in absolute and predicted values was also reduced in FP [-79(±28) vs -109(±44) cmH2O (p = 0.004) and 67(±26) vs 89(±36) % (p = 0.016)]. Thus, we concluded that the pulmonary function was impaired in clinically stable Fontan patients and the static and dynamic lung volumes were significantly reduced compared with HC. We also demonstrated a strong correlation between absolute Peak VO2 with the FVC, FEV1, TLC, and DLCO measured by complete pulmonary test.


Assuntos
Técnica de Fontan/efeitos adversos , Cardiopatias Congênitas/fisiopatologia , Cardiopatias Congênitas/cirurgia , Pulmão/fisiopatologia , Transtornos Respiratórios/fisiopatologia , Adolescente , Adulto , Estudos Transversais , Teste de Esforço , Tolerância ao Exercício/fisiologia , Feminino , Cardiopatias Congênitas/complicações , Humanos , Masculino , Estudos Prospectivos , Transtornos Respiratórios/etiologia , Testes de Função Respiratória , Estudos Retrospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA