Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neural Transm (Vienna) ; 131(8): 971-986, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38874765

RESUMO

Resveratrol (3,5,4'-trihydroxy-trans-stilbene), a phenol commonly found in grapes and wine, has been associated as protective in experimental models involving alterations in different neurotransmitter systems. However, studies are reporting that resveratrol could have adverse effects. This study evaluated if the association of a low dose of ketamine and resveratrol could induce behavioral manifestations associated with biochemical alterations. Moreover, the effects of treatment with resveratrol and/or ketamine on monoamine oxidase (MAO) activity, oxidative stress markers, and IL-6 levels in the brain were also investigated. Male Swiss mice received a low dose of ketamine (20 mg/kg) for 14 consecutive days, and resveratrol (10, 30, or 100 mg/kg) from day 8 up to day 14 of the experimental period, intraperitoneally. Locomotor, stereotyped behavior, Y-maze, novel recognition object test (NORT), and social interaction were quantified as well as ex vivo analysis of MAO activity, IL-6 levels, and oxidative stress markers (TBARS and total thiol levels) in brain tissues. Ketamine per se reduced the number of bouts of stereotyped behavior on day 8 of the experimental period. Resveratrol per se reduced the locomotor and exploratory activity in the open field, the time of exploration of new objects in the NORT, MAO-A activity in the striatum and increased the IL-6 levels in the cortex. These effects were attenuated when the mice were co-treated with ketamine and resveratrol. There was a decrease in MAO-A activity in the cortex of mice treated with ketamine + resveratrol 100 mg/kg. No significant alterations were found in oxidative stress markers. Resveratrol does not appear to cause summative effects with ketamine on behavioral alterations. However, the effect of resveratrol per se, mainly on locomotor and exploratory activity, should be better investigated.


Assuntos
Ketamina , Monoaminoxidase , Estresse Oxidativo , Resveratrol , Animais , Resveratrol/farmacologia , Resveratrol/administração & dosagem , Ketamina/farmacologia , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Monoaminoxidase/metabolismo , Monoaminoxidase/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Comportamento Exploratório/efeitos dos fármacos , Interleucina-6/metabolismo , Comportamento Estereotipado/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Interação Social/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos
2.
Inflammopharmacology ; 32(4): 2295-2304, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38907857

RESUMO

Burns are a global health problem and can be caused by several factors, including ultraviolet (UV) radiation. Exposure to UVB radiation can cause sunburn and a consequent inflammatory response characterised by pain, oedema, inflammatory cell infiltration, and erythema. Pharmacological treatments available to treat burns and the pain caused by them include nonsteroidal anti-inflammatory drugs (NSAIDs), opioids, antimicrobials and glucocorticoids, which are associated with adverse effects. Therefore, the search for new therapeutic alternatives is needed. Diosmetin, an aglycone of the flavonoid diosmin, has antinociceptive, antioxidant and anti-inflammatory properties. Thus, we evaluated the antinociceptive and anti-inflammatory effects of topical diosmetin (0.01, 0.1 and 1%) in a UVB radiation-induced sunburn model in mice. The right hind paw of the anaesthetised mice was exposed only once to UVB radiation (0.75 J/cm2) and immediately treated with diosmetin once a day for 5 days. The diosmetin antinociceptive effect was evaluated by mechanical allodynia and pain affective-motivational behaviour, while its anti-inflammatory activity was assessed by measuring paw oedema and polymorphonuclear cell infiltration. Mice exposed to UVB radiation presented mechanical allodynia, increased pain affective-motivational behaviour, paw oedema and polymorphonuclear cell infiltration into the paw tissue. Topical Pemulen® TR2 1% diosmetin reduced the mechanical allodynia, the pain affective-motivational behaviour, the paw oedema and the number of polymorphonuclear cells in the mice's paw tissue similar to that presented by Pemulen® TR2 0.1% dexamethasone. These findings indicate that diosmetin has therapeutic potential and may be a promising strategy for treating patients experiencing inflammatory pain, especially those associated with sunburn.


Assuntos
Anti-Inflamatórios , Modelos Animais de Doenças , Flavonoides , Inflamação , Nociceptividade , Queimadura Solar , Raios Ultravioleta , Animais , Queimadura Solar/tratamento farmacológico , Queimadura Solar/patologia , Camundongos , Raios Ultravioleta/efeitos adversos , Inflamação/tratamento farmacológico , Masculino , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/administração & dosagem , Flavonoides/farmacologia , Flavonoides/administração & dosagem , Nociceptividade/efeitos dos fármacos , Administração Tópica , Analgésicos/farmacologia , Analgésicos/administração & dosagem , Edema/tratamento farmacológico , Hiperalgesia/tratamento farmacológico
3.
Br J Pharmacol ; 181(18): 3445-3461, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38772415

RESUMO

BACKGROUND AND PURPOSE: Fibromyalgia is a complex clinical disorder with an unknown aetiology, characterized by generalized pain and co-morbid symptoms such as anxiety and depression. An imbalance of oxidants and antioxidants is proposed to play a pivotal role in the pathogenesis of fibromyalgia symptoms. However, the precise mechanisms by which oxidative stress contributes to fibromyalgia-induced pain remain unclear. The transient receptor potential ankyrin 1 (TRPA1) channel, known as both a pain sensor and an oxidative stress sensor, has been implicated in various painful conditions. EXPERIMENTAL APPROACH: The feed-forward mechanism that implicates reactive oxygen species (ROS) driven by TRPA1 was investigated in a reserpine-induced fibromyalgia model in C57BL/6J mice employing pharmacological interventions and genetic approaches. KEY RESULTS: Reserpine-treated mice developed pain-like behaviours (mechanical/cold hypersensitivity) and early anxiety-depressive-like disorders, accompanied by increased levels of oxidative stress markers in the sciatic nerve tissues. These effects were not observed upon pharmacological blockade or global genetic deletion of the TRPA1 channel and macrophage depletion. Furthermore, we demonstrated that selective silencing of TRPA1 in Schwann cells reduced reserpine-induced neuroinflammation (NADPH oxidase 1-dependent ROS generation and macrophage increase in the sciatic nerve) and attenuated fibromyalgia-like behaviours. CONCLUSION AND IMPLICATIONS: Activated Schwann cells expressing TRPA1 promote an intracellular pathway culminating in the release of ROS and recruitment of macrophages in the mouse sciatic nerve. These cellular and molecular events sustain mechanical and cold hypersensitivity in the reserpine-evoked fibromyalgia model. Targeting TRPA1 channels on Schwann cells could offer a novel therapeutic approach for managing fibromyalgia-related behaviours.


Assuntos
Fibromialgia , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Espécies Reativas de Oxigênio , Reserpina , Células de Schwann , Canal de Cátion TRPA1 , Animais , Reserpina/farmacologia , Fibromialgia/induzido quimicamente , Fibromialgia/metabolismo , Canal de Cátion TRPA1/metabolismo , Canal de Cátion TRPA1/antagonistas & inibidores , Canal de Cátion TRPA1/genética , Estresse Oxidativo/efeitos dos fármacos , Células de Schwann/metabolismo , Células de Schwann/efeitos dos fármacos , Masculino , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Dor/metabolismo , Dor/induzido quimicamente , Nervo Isquiático/metabolismo , Modelos Animais de Doenças , Camundongos Knockout , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/genética
4.
Inflammopharmacology ; 32(4): 2601-2611, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38662182

RESUMO

Fibromyalgia is a potentially disabling idiopathic disease characterized by widespread chronic pain associated with comorbidities such as fatigue, anxiety, and depression. Current therapeutic approaches present adverse effects that limit adherence to therapy. Diosmetin, an aglycone of the flavonoid glycoside diosmin found in citrus fruits and the leaves of Olea europaea L., has antinociceptive, anti-inflammatory, and antioxidant properties. Here, we investigated the effect of diosmetin on nociceptive behaviors and comorbidities in an experimental fibromyalgia model induced by reserpine in mice. To induce the experimental fibromyalgia model, a protocol of subcutaneous injections of reserpine (1 mg/kg) was used once a day for three consecutive days in adult male Swiss mice. Mice received oral diosmetin on the fourth day after the first reserpine injection. Nociceptive (mechanical allodynia, muscle strength, and thermal hyperalgesia) and comorbid (depressive-like and anxiety behavior) parameters were evaluated. Potential adverse effects associated with diosmetin plus reserpine (locomotor alteration, cataleptic behavior, and body weight and temperature changes) were also evaluated. Oral diosmetin (0.015-1.5 mg/kg) reduced the mechanical allodynia, thermal hyperalgesia, and loss of muscle strength induced by reserpine. Diosmetin (0.15 mg/kg) also attenuated depressive-like and anxiety behaviors without causing locomotor alteration, cataleptic behavior, and alteration in weight and body temperature of mice. Overall, diosmetin can be an effective and safe therapeutic alternative to treat fibromyalgia symptoms, such as pain, depression and anxiety.


Assuntos
Modelos Animais de Doenças , Fibromialgia , Flavonoides , Hiperalgesia , Reserpina , Animais , Reserpina/farmacologia , Fibromialgia/tratamento farmacológico , Fibromialgia/induzido quimicamente , Camundongos , Masculino , Flavonoides/farmacologia , Hiperalgesia/tratamento farmacológico , Analgésicos/farmacologia , Ansiedade/tratamento farmacológico , Depressão/tratamento farmacológico , Depressão/induzido quimicamente , Comportamento Animal/efeitos dos fármacos
5.
J Neurochem ; 168(6): 1143-1156, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38372436

RESUMO

Multiple sclerosis (MS) is a neurodegenerative disease that affects the central nervous system (CNS) generating neuropathic pain and anxiety. Primary progressive MS (PPMS) is the most disabling clinical form, and the patients present an intense neurodegenerative process. In this context, the advanced oxidation protein products (AOPPs) are oxidized compounds and their accumulation in plasma has been related to clinical disability in MS patients. However, the involvement of AOPPs in neuropathic pain- and anxiety-like symptoms was not previously evaluated. To assess this, female mice C57BL/6J were used to induce progressive experimental autoimmune encephalomyelitis (PMS-EAE). Clinical score, weight, strength of plantar pressure, rotarod test, mechanical allodynia, and cold hypersensitivity were evaluated before induction (baseline) and on days 7th, 10th, and 14th post-immunization. We assessed nest building, open field, and elevated plus-maze tests 13 days post-immunization. Animals were killed at 14 days post-immunization; then, AOPPs levels, NADPH oxidase, and myeloperoxidase (MPO) activity were measured in the prefrontal cortex, hippocampus, and spinal cord samples. The clinical score increased 14th post-immunization without changes in weight and mobility. Reduced paw strength, mechanical allodynia, and cold allodynia increased in the PMS-EAE animals. PMS-EAE mice showed spontaneous nociception and anxiety-like behavior. AOPPs concentration, NADPH oxidase, and MPO activity increase in CNS structures. Multivariate analyses indicated that the rise of AOPPs levels, NADPH oxidase, and MPO activity influenced the clinical score and cold allodynia. Thus, we indicated the association between non-stimuli painful perception, anxiety-like, and CNS oxidative damage in the PMS-EAE model.


Assuntos
Produtos da Oxidação Avançada de Proteínas , Encefalomielite Autoimune Experimental , Camundongos Endogâmicos C57BL , Animais , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/psicologia , Feminino , Camundongos , Produtos da Oxidação Avançada de Proteínas/metabolismo , Nociceptividade/fisiologia , Hiperalgesia/metabolismo , Medula Espinal/metabolismo , Ansiedade/etiologia , Ansiedade/psicologia
6.
Eur J Pharmacol ; 967: 176385, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38311276

RESUMO

Fibromyalgia is a painful disorder of unknown aetiology that presents activation and recruitment of innate immune cells, including mast cells. Efforts have been made to understand its pathogenesis to manage it better. Thus, we explored the involvement of peripheral mast cells in an experimental model of fibromyalgia induced by reserpine. Reserpine (1 mg/kg) was subcutaneously (s.c.) injected once daily in the back of male Swiss mice for three consecutive days. We analysed mechanical and cold allodynia, muscle fatigue and number of mast cell in plantar tissue. The fibromyalgia induction produced mast cell infiltration (i.e., mastocytosis) in the mice's plantar tissue. The depletion of mast cell mediators with the compound 48/80 (0.5-4 mg/kg, intraperitoneal (i.p.)) or the mast cell membrane stabilizer ketotifen fumarate (10 mg/kg, oral route (p.o.) widely (80-90 %) and extensively (from 1 up to 10 days) prevented reserpine-induced mechanical and cold allodynia and muscle fatigue. Compound 48/80 also prevented the reserpine-induced mastocytosis. Finally, we demonstrated that PAR-2, 5-HT2A, 5-HT3, H1, NK1 and MrgprB2 receptors, expressed in neuronal or mast cells, seem crucial to mediate fibromyalgia-related cardinal symptoms since antagonists or inhibitors of these receptors (gabexate (10 mg/kg, s.c.), ENMD-1068 (10 mg/kg, i.p.), ketanserin (1 mg/kg, i.p.), ondansetron (1 mg/kg, p.o.), promethazine (1 mg/kg, i.p.), and L733,060 (5 mg/kg, s.c.), respectively) transiently reversed the reserpine-induced allodynia and fatigue. The results indicate that mast cells mediate painful and fatigue behaviours in this fibromyalgia model, representing potential therapy targets to treat fibromyalgia syndrome.


Assuntos
Fibromialgia , Mastocitose , Camundongos , Masculino , Animais , Fibromialgia/metabolismo , Mastócitos/metabolismo , Hiperalgesia/metabolismo , Serotonina/metabolismo , Reserpina/efeitos adversos , Mastocitose/metabolismo , Mastocitose/patologia
7.
Cancers (Basel) ; 16(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38339331

RESUMO

Cisplatin is a platinum-based chemotherapy drug widely used to treat various solid tumours. Although it is effective in anti-cancer therapy, many patients develop peripheral neuropathy during and after cisplatin treatment. Peripheral neuropathy results from lesions or diseases in the peripheral somatosensory nervous system and is a significant cause of debilitation and suffering in patients. In recent years, preclinical studies have been conducted to elucidate the mechanisms involved in chemotherapy-induced peripheral neuropathic pain, as well as to promote new therapeutic targets since current treatments are ineffective and are associated with adverse effects. G-protein coupled receptors and ion channels play a significant role in pain processing and may represent promising targets for improving the management of cisplatin-induced neuropathic pain. This review describes the role of G protein-coupled receptors and ion channels in cisplatin-induced pain, analysing preclinical experimental studies that investigated the role of each receptor subtype in the modulation of cisplatin-induced pain.

8.
Pharmaceutics ; 16(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38399236

RESUMO

Dexamethasone has a high anti-inflammatory efficacy in treating skin inflammation. However, its use is related to the rebound effect, rosacea, purple, and increased blood glucose levels. Nanotechnology approaches have emerged as strategies for drug delivery due to their advantages in improving therapeutic effects. To reduce dexamethasone-related adverse effects and improve the anti-inflammatory efficacy of treatments, we developed nanocarriers containing this corticosteroid and oleic acid. Nanocapsules and nanoemulsion presented dexamethasone content close to the theoretical value and controlled dexamethasone release in an in vitro assay. Gellan gum-based hydrogels were successfully prepared to employ the nanostructured systems. A permeation study employing porcine skin showed that hydrogels containing non-nanoencapsulated dexamethasone (0.025%) plus oleic acid (3%) or oleic acid (3%) plus dexamethasone (0.025%)-loaded nanocapsules provided a higher amount of dexamethasone in the epidermis compared to non-nanoencapsulated dexamethasone (0.5%). Hydrogels containing oleic acid plus dexamethasone-loaded nanocapsules effectively inhibited mice ear edema (with inhibitions of 89.26 ± 3.77% and 85.11 ± 2.88%, respectively) and inflammatory cell infiltration (with inhibitions of 49.58 ± 4.29% and 27.60 ± 11.70%, respectively). Importantly, the dexamethasone dose employed in hydrogels containing the nanocapsules that effectively inhibited ear edema and cell infiltration was 20-fold lower (0.025%) than that of non-nanoencapsulated dexamethasone (0.5%). Additionally, no adverse effects were observed in preliminary toxicity tests. Our study suggests that nanostructured hydrogel containing a reduced effective dose of dexamethasone could be a promising therapeutic alternative to treat inflammatory disorders with reduced or absent adverse effects. Additionally, testing our formulation in a clinical study on patients with skin inflammatory diseases would be very important to validate our study.

9.
Mol Neurobiol ; 61(3): 1627-1642, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37740866

RESUMO

Anastrozole, an aromatase inhibitor, induces painful musculoskeletal symptoms, which affect patients' quality of life and lead to therapy discontinuation. Efforts have been made to understand the mechanisms involved in these painful symptoms to manage them better. In this context, we explored the role of the Transient Receptor Potential Vanilloid 4 (TRPV4), a potential transducer of several nociceptive mechanisms, in anastrozole-induced musculoskeletal pain in mice. Besides, we evaluated the possible sensibilization of TRPV4 by signalling pathways downstream, PLC, PKC and PKCε from kinin B2 (B2R) and B1 (B1R) receptors activation in anastrozole-induced pain. Anastrozole caused mechanical allodynia and muscle strength loss in mice. HC067047, TRPV4 antagonist, reduced the anastrozole-induced mechanical allodynia and muscle strength loss. In animals previously treated with anastrozole, the local administration of sub-nociceptive doses of the TRPV4 (4α-PDD or hypotonic solution), B2R (Bradykinin) or B1R (DABk) agonists enhanced the anastrozole-induced pain behaviours. The sensitizing effects induced by local injection of the TRPV4, B2R and B1R agonists in animals previously treated with anastrozole were reduced by pre-treatment with TRPV4 antagonist. Furthermore, inhibition of PLC, PKC or PKCε attenuated the mechanical allodynia and muscle strength loss induced by TRPV4, B2R and B1R agonists. The generation of painful conditions caused by anastrozole depends on direct TRPV4 activation or indirect, e.g., PLC, PKC and PKCε pathways downstream from B2R and B1R activation. Thus, the TRPV4 channels act as sensors of extracellular and intracellular changes, making them potential therapeutic targets for alleviating pain related to aromatase inhibitors use, such as anastrozole.


Assuntos
Antineoplásicos , Canais de Cátion TRPV , Humanos , Camundongos , Animais , Anastrozol , Hiperalgesia/induzido quimicamente , Qualidade de Vida , Receptor B1 da Bradicinina/metabolismo , Receptor B2 da Bradicinina/metabolismo , Dor/tratamento farmacológico , Bradicinina/farmacologia
10.
Inflammopharmacology ; 31(6): 3153-3166, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37752305

RESUMO

Musculoskeletal pain is a widely experienced public healthcare issue, especially after traumatic muscle injury. Besides, it is a common cause of disability, but this pain remains poorly managed. However, the pathophysiology of traumatic muscle injury-associated pain and inflammation has not been fully elucidated. In this regard, the transient receptor potential ankyrin 1 (TRPA1) has been studied in inflammatory and painful conditions. Thus, this study aimed to evaluate the antinociceptive and anti-inflammatory effect of the topical application of a TRPA1 antagonist in a model of traumatic muscle injury in rats. The mechanical trauma model was developed by a single blunt trauma impact on the right gastrocnemius muscle of Wistar male rats (250-350 g). The animals were divided into four groups (Sham/Vehicle; Sham/HC-030031 0.05%; Injury/Vehicle, and Injury/HC-030031 0.05%) and topically treated with a Lanette® N cream base containing a TRPA1 antagonist (HC-030031, 0.05%; 200 mg/muscle) or vehicle (Lanette® N cream base; 200 mg/muscle), which was applied at 2, 6, 12, 24, and 46 h after muscle injury. Furthermore, we evaluated the contribution of the TRPA1 channel on nociceptive, inflammatory, and oxidative parameters. The topical application of TRPA1 antagonist reduced biomarkers of muscle injury (lactate/glucose ratio), spontaneous nociception (rat grimace scale), inflammatory (inflammatory cell infiltration, cytokine levels, myeloperoxidase, and N-acetyl-ß-D-glucosaminidase activities) and oxidative (nitrite levels and dichlorofluorescein fluorescence) parameters, and mRNA Trpa1 levels in the muscle tissue. Thus, these results demonstrate that TRPA1 may be a promising anti-inflammatory and antinociceptive target in treating muscle pain after traumatic muscle injury.


Assuntos
Inflamação , Nociceptividade , Ratos , Masculino , Animais , Ratos Wistar , Canal de Cátion TRPA1 , Inflamação/tratamento farmacológico , Dor/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Analgésicos/farmacologia , Músculos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA