Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biometals ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874822

RESUMO

Candida species undeniably rank as the most prevalent opportunistic human fungal pathogens worldwide, with Candida albicans as the predominant representative. However, the emergence of non-albicans Candida species (NACs) has marked a significant shift, accompanied by rising incidence rates and concerning trends of antifungal resistance. The search for new strategies to combat antifungal-resistant Candida strains is of paramount importance. Recently, our research group reported the anti-Candida activity of a coordination compound containing copper(II) complexed with theophylline (theo) and 1,10-phenanthroline (phen), known as "CTP" - Cu(theo)2phen(H2O).5H2O. In the present work, we investigated the mechanisms of action of CTP against six medically relevant, antifungal-resistant NACs, including C. auris, C. glabrata, C. haemulonii, C. krusei, C. parapsilosis and C. tropicalis. CTP demonstrated significant efficacy in inhibiting mitochondrial dehydrogenases, leading to heightened intracellular reactive oxygen species production. CTP treatment resulted in substantial damage to the plasma membrane, as evidenced by the passive incorporation of propidium iodide, and induced DNA fragmentation as revealed by the TUNEL assay. Scanning electron microscopy images of post-CTP treatment NACs further illustrated profound alterations in the fungal surface morphology, including invaginations, cavitations and lysis. These surface modifications significantly impacted the ability of Candida cells to adhere to a polystyrene surface and to form robust biofilm structures. Moreover, CTP was effective in disassembling mature biofilms formed by these NACs. In conclusion, CTP represents a promising avenue for the development of novel antifungals with innovative mechanisms of action against clinically relevant NACs that are resistant to antifungals commonly used in clinical settings.

2.
Biometals ; 37(2): 321-336, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37917351

RESUMO

Candida spp. are the commonest fungal pathogens worldwide. Antifungal resistance is a problem that has prompted the discovery of novel anti-Candida drugs. Herein, 25 compounds, some of them containing copper(II), cobalt(II) and manganese(II) ions, were initially evaluated for inhibiting the growth of reference strains of Candida albicans and Candida tropicalis. Eight (32%) of the compounds inhibited the proliferation of these yeasts, displaying minimum inhibitory concentrations (MICs) ranging from 31.25 to 250 µg/mL and minimum fungicidal concentration (MFCs) from 62.5 to 250 µg/mL. Drug-likeness/pharmacokinetic calculated by SwissADME indicated that the 8 selected compounds were suitable for use as topical drugs. The complex CTP, Cu(theo)2phen(H2O).5H2O (theo = theophylline; phen = 1,10-phenanthroline), was chosen for further testing against 10 medically relevant Candida species that were resistant to fluconazole/amphotericin B. CTP demonstrated a broad spectrum of action, inhibiting the growth of all 20 clinical fungal isolates, with MICs from 7.81 to 62.5 µg/mL and MFCs from 15.62 to 62.5 µg/mL. Conversely, CTP did not cause lysis in erythrocytes. The toxicity of CTP was evaluated in vivo using Galleria mellonella and Tenebrio molitor. CTP had no or low levels of toxicity at doses ranging from 31.25 to 250 µg/mL for 5 days. After 24 h of treatment, G. mellonella larvae exhibited high survival rates even when exposed to high doses of CTP (600 µg/mL), with the 50% cytotoxic concentration calculated as 776.2 µg/mL, generating selectivity indexes varying from 12.4 to 99.4 depending on each Candida species. These findings suggest that CTP could serve as a potential drug to treat infections caused by Candida species resistant to clinically available antifungals.


Assuntos
Antifúngicos , Candida , Fenantrolinas , Antifúngicos/farmacologia , Antifúngicos/química , Cobre/farmacologia , Teofilina/farmacologia , Candida albicans , Farmacorresistência Fúngica , Testes de Sensibilidade Microbiana
3.
J Fungi (Basel) ; 9(8)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37623630

RESUMO

Echinocandins, used for the prevention and treatment of invasive fungal infections, have led to a rise in breakthrough infections caused by resistant Candida species. Among these species, those belonging to the Candida haemulonii complex are rare multidrug-resistant (MDR) yeasts that are frequently misidentified but have emerged as significant healthcare-associated pathogens causing invasive infections. The objectives of this study were to investigate the evolutionary pathways of echinocandin resistance in C. haemulonii by identifying mutations in the FKS1 gene and evaluating the impact of resistance on fitness. After subjecting a MDR clinical isolate of C. haemulonii (named Ch4) to direct selection using increasing caspofungin concentrations, we successfully obtained an isolate (designated Ch4'r) that exhibited a high level of resistance, with MIC values exceeding 16 mg/L for all tested echinocandin drugs (caspofungin, micafungin, and anidulafungin). Sequence analysis revealed a specific mutation in the resistant Ch4'r strain, leading to an arginine-histidine amino acid substitution (R1354H), occurring at the G4061A position of the HS2 region of the FKS1 gene. Compared to the wild-type strain, Ch4'r exhibited significantly reduced growth proliferation, biofilm formation capability, and phagocytosis ratio, indicating a decrease in fitness. Transmission electron microscopy analysis revealed alterations in cell wall components, with a notable increase in cell wall thickness. The resistant strain also exhibited higher amounts (2.5-fold) of chitin, a cell wall-located molecule, compared to the wild-type strain. Furthermore, the resistant strain demonstrated attenuated virulence in the Galleria mellonella larval model. The evolved strain Ch4'r maintained its resistance profile in vivo since the treatment with either caspofungin or micafungin did not improve larval survival or reduce the fungal load. Taken together, our findings suggest that the acquisition of pan-echinocandin resistance occurred rapidly after drug exposure and was associated with a significant fitness cost in C. haemulonii. This is particularly concerning as echinocandins are often the first-line treatment option for MDR Candida species.

4.
Trop Med Infect Dis ; 8(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37624333

RESUMO

Chagas disease is an emerging and neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi, estimated to infect 8 to 10 million people worldwide, according to the World Health Organization [...].

5.
Trop Med Infect Dis ; 8(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37505644

RESUMO

Leishmaniasis, caused by protozoa of the genus Leishmania, encompasses a group of neglected diseases with diverse clinical and epidemiological manifestations that can be fatal if not adequately and promptly managed/treated. The current chemotherapy options for this disease are expensive, require invasive administration and often lead to severe side effects. In this regard, our research group has previously reported the potent anti-Leishmania activity of two coordination compounds (complexes) derived from 1,10-phenanthroline-5,6-dione (phendione): [Cu(phendione)3].(ClO4)2.4H2O and [Ag(phendione)2].ClO4. The present study aimed to evaluate the effects of these complexes on leishmanolysin (gp63), a virulence factor produced by all Leishmania species that plays multiple functions and is recognized as a potential target for antiparasitic drugs. The results showed that both Ag-phendione (-74.82 kcal/mol) and Cu-phendione (-68.16 kcal/mol) were capable of interacting with the amino acids comprising the active site of the gp63 protein, exhibiting more favorable interaction energies compared to phendione alone (-39.75 kcal/mol) or 1,10-phenanthroline (-45.83 kcal/mol; a classical gp63 inhibitor) as judged by molecular docking assay. The analysis of kinetic parameters using the fluorogenic substrate Z-Phe-Arg-AMC indicated Vmax and apparent Km values of 0.064 µM/s and 14.18 µM, respectively, for the released gp63. The effects of both complexes on gp63 proteolytic activity were consistent with the in silico assay, where Ag-phendione exhibited the highest gp63 inhibition capacity against gp63, with an IC50 value of 2.16 µM and the lowest inhibitory constant value (Ki = 5.13 µM), followed by Cu-phendione (IC50 = 163 µM and Ki = 27.05 µM). Notably, pretreatment of live L. amazonensis promastigotes with the complexes resulted in a significant reduction in the expression of gp63 protein, including the isoforms located on the parasite cell surface. Both complexes markedly decreased the in vitro association indexes between L. amazonensis promastigotes and THP-1 human macrophages; however, this effect was reversed by the addition of soluble gp63 molecules to the interaction medium. Collectively, our findings highlight the potential use of these potent complexes in antivirulence therapy against Leishmania, offering new insights for the development of effective treatments for leishmaniasis.

6.
Trop Med Infect Dis ; 8(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36828515

RESUMO

The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been responsible for approximately 6.8 million deaths worldwide, threatening more than 753 million individuals. People with severe coronavirus disease-2019 (COVID-19) infection often exhibit an immunosuppression condition, resulting in greater chances of developing co-infections with bacteria and fungi, including opportunistic yeasts belonging to the Saccharomyces and Candida genera. In the present work, we have reported the case of a 75-year-old woman admitted at a Brazilian university hospital with an arterial ulcer in the left foot, which was being prepared for surgical amputation. The patient presented other underlying diseases and presented positive tests for COVID-19 prior to hospitalization. She received antimicrobial treatment, but her general condition worsened quickly, leading to death by septic shock after 4 days of hospitalization. Blood samples collected on the day she died were positive for yeast-like organisms, which were later identified as Saccharomyces cerevisiae by both biochemical and molecular methods. The fungal strain exhibited low minimal inhibitory concentration values for the antifungal agents tested (amphotericin B, 5-flucytosine, caspofungin, fluconazole and voriconazole), and it was able to produce important virulence factors, such as extracellular bioactive molecules (e.g., aspartic peptidase, phospholipase, esterase, phytase, catalase, hemolysin and siderophore) and biofilm. Despite the activity against planktonic cells, the antifungals were not able to impact the mature biofilm parameters (biomass and viability). Additionally, the S. cerevisiae strain caused the death of Tenebrio molitor larvae, depending on the fungal inoculum, and larvae immunosuppression with corticosteroids increased the larvae mortality rate. In conclusion, the present study highlighted the emergence of S. cerevisiae as an opportunistic fungal pathogen in immunosuppressed patients presenting several severe comorbidities, including COVID-19 infection.

7.
Pathogens ; 12(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36678418

RESUMO

Leishmaniasis is a neglected disease caused by protozoa belonging to the Leishmania genus. Notably, the search for new, promising and potent anti-Leishmania compounds remains a major goal due to the inefficacy of the available drugs used nowadays. In the present work, we evaluated the effects of 1,10-phenanthroline-5,6-dione (phendione) coordinated to silver(I), [Ag(phendione)2]ClO4 (Ag-phendione), and copper(II), [Cu(phendione)3](ClO4)2·4H2O (Cu-phendione), as potential drugs to be used in the chemotherapy against Leishmania amazonensis and Leishmania chagasi. The results showed that promastigotes treated with Ag-phendione and Cu-phendione presented a significant reduction in the proliferation rate. The IC50 values calculated to Ag-phendione and Cu-phendione, respectively, were 7.8 nM and 7.5 nM for L. amazonensis and 24.5 nM and 20.0 nM for L. chagasi. Microscopical analyses revealed several relevant morphological changes in promastigotes, such as a rounding of the cell body and a shortening/loss of the single flagellum. Moreover, the treatment promoted alterations in the unique mitochondrion of these parasites, inducing significant reductions on both metabolic activity and membrane potential parameters. All these cellular perturbations induced the triggering of apoptosis-like death in these parasites, as judged by the (i) increased percentage of annexin-positive/propidium iodide negative cells, (ii) augmentation in the proportion of parasites in the sub-G0/G1 phase and (iii) DNA fragmentation. Finally, the test compounds showed potent effects against intracellular amastigotes; contrarily, these molecules were well tolerated by THP-1 macrophages, which resulted in excellent selective index values. Overall, the results highlight new selective and effective drugs against Leishmania species, which are important etiological agents of both cutaneous (L. amazonensis) and visceral (L. chagasi) leishmaniasis in a global perspective.

9.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35887004

RESUMO

Leishmania tarentolae is a non-pathogenic trypanosomatid isolated from lizards widely used for heterologous protein expression and extensively studied to understand the pathogenic mechanisms of leishmaniasis. The repertoire of leishmanolysin genes was reported to be expanded in L. tarentolae genome, but no proteolytic activity was detected. Here, we analyzed L. tarentolae leishmanolysin proteins from the genome to the structural levels and evaluated the enzymatic activity of the wild-type and overexpressing mutants of leishmanolysin. A total of 61 leishmanolysin sequences were retrieved from the L. tarentolae genome. Five of them were selected for phylogenetic analysis, and for three of them, we built 3D models based on the crystallographic structure of L. major ortholog. Molecular dynamics simulations of these models disclosed a less negative electrostatic potential compared to the template. Subsequently, L. major LmjF.10.0460 and L. tarentolae LtaP10.0650 leishmanolysins were cloned in a pLEXSY expression system into L. tarentolae. Proteins from the wild-type and the overexpressing parasites were submitted to enzymatic analysis. Our results revealed that L. tarentolae leishmanolysins harbor a weak enzymatic activity about three times less abundant than L. major leishmanolysin. Our findings strongly suggest that the less negative electrostatic potential of L. tarentolae leishmanolysin can be the reason for the reduced proteolytic activity detected in this parasite.


Assuntos
Leishmania , Leishmaniose , Parasitos , Animais , Leishmania/genética , Leishmania/metabolismo , Leishmaniose/parasitologia , Metaloendopeptidases/metabolismo , Filogenia
10.
Med Mycol ; 60(6)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35641191

RESUMO

The opportunistic filamentous fungi belonging to the Scedosporium and Lomentospora genera are highly tolerant to all classes of available antifungal drugs. Moreover, the mature biofilm formed by these fungi presents higher antifungal resistance when compared to planktonic cells. Nevertheless, the resistance mechanisms developed by the biofilm lifestyle are not completely elucidated. In the current study, we have investigated the mainly known resistance mechanisms to azoles (voriconazole and fluconazole) and polyenes (amphotericin B [AMB]) in S. apiospermum, S. minutisporum, S. aurantiacum, and L. prolificans (formerly S. prolificans) biofilms. Both classes of antifungals can physically bind to the extracellular matrix of mature biofilms, preventing the drugs from reaching their targets on biofilm-forming cells, which precludes their activity and toxicity. In addition, the activity of efflux pumps, measured by Rhodamine 6 G, was increased along with the maturation of the biofilm. The efflux pump's inhibition by L-Phe-L-Arg-ß-naphthylamide culminated in a 2- to 16-fold increase in azole susceptibility in conidial cells, but not in mature biofilms. Finally, we demonstrated by using specific inhibitors that in conidia, but not in biofilms, AMB induced the production of reactive oxygen species through the activity of the oxidative phosphorylation system (complex I-IV and alternative oxidases). However, the cellular redox imbalance caused by AMB was well-coped with the high activity of antioxidative enzymes, such as superoxide dismutase and catalase. Altogether, our results revealed that Scedosporium/Lomentospora biofilm resistance occurs through various mechanisms that operate concomitantly, which could explain the huge challenge in the clinical treatment of scedosporiosis/lomentosporiosis. LAY SUMMARY: Scedosporium/Lomentospora spp. are multidrug-resistant pathogens able to cause diverse types of infections with typical biofilm characteristics, which makes the treatment a hard issue. We deciphered the resistance mechanisms to classical antifungals developed in the biofilm formed by these fungi.


Assuntos
Ascomicetos , Scedosporium , Anfotericina B , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Biofilmes , Farmacorresistência Fúngica , Testes de Sensibilidade Microbiana/veterinária , Esporos Fúngicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA