Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurochem Res ; 38(11): 2359-63, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24013888

RESUMO

Neuropathological hallmarks of Alzheimer's disease (AD) include amyloid plaque formation, neurofibrillary tangles, neuronal and synaptic loss. This study aims to identify the neuroprotective effects of the selenium compounds on the neurotoxicity of amyloid ß(1-42) in primary cultures of murine hippocampal neurons. Samples were subjected to immunocytochemistry and western blotting techniques to determine the role of treatments on neuronal viability and synaptic protein SNAP-25. We observed a reduced cell viability amyloid ß-peptide (1-42)-induced. When cells were co-treated with amyloid ß-peptide (1-42) and selenium compounds, we verified a strong increase in relative cell viability and in the level of synaptic marker synaptosomal-associated protein SNAP-25 induced by selenium compounds.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Azóis/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Compostos Organosselênicos/farmacologia , Fragmentos de Peptídeos/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Isoindóis , Ratos , Proteína 25 Associada a Sinaptossoma/metabolismo
2.
Molecules ; 15(11): 7699-714, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21030914

RESUMO

Since the successful use of the organoselenium drug ebselen in clinical trials for the treatment of neuropathological conditions associated with oxidative stress, there have been concerted efforts geared towards understanding the precise mechanism of action of ebselen and other organoselenium compounds, especially the diorganyl diselenides such as diphenyl diselenide, and its analogs. Although the mechanism of action of ebselen and other organoselenium compounds has been shown to be related to their ability to generally mimic native glutathione peroxidase (GPx), only ebselen however has been shown to serve as a substrate for the mammalian thioredoxin reductase (TrxR), demonstrating another component of its pharmacological mechanisms. In fact, there is a dearth of information on the ability of other organoselenium compounds, especially diphenyl diselenide and its analogs, to serve as substrates for the mammalian enzyme thioredoxin reductase. Interestingly, diphenyl diselenide shares several antioxidant and neuroprotective properties with ebselen. Hence in the present study, we tested the hypothesis that diphenyl diselenide and some of its analogs (4,4'-bistrifluoromethyldiphenyl diselenide, 4,4'-bismethoxy-diphenyl diselenide, 4.4'-biscarboxydiphenyl diselenide, 4,4'-bischlorodiphenyl diselenide, 2,4,6,2',4',6'-hexamethyldiphenyl diselenide) could also be substrates for rat hepatic TrxR. Here we show for the first time that diselenides are good substrates for mammalian TrxR, but not necessarily good mimetics of GPx, and vice versa. For instance, bis-methoxydiphenyl diselenide had no GPx activity, whereas it was a good substrate for reduction by TrxR. Our experimental observations indicate a possible dissociation between the two pathways for peroxide degradation (either via substrate for TrxR or as a mimic of GPx). Consequently, the antioxidant activity of diphenyl diselenide and analogs can be attributed to their capacity to be substrates for mammalian TrxR and we therefore conclude that subtle changes in the aryl moiety of diselenides can be used as tool for dissociation of GPx or TrxR pathways as mechanism triggering their antioxidant activities.


Assuntos
Antioxidantes/metabolismo , Derivados de Benzeno/metabolismo , Glutationa Peroxidase/metabolismo , Mamíferos/metabolismo , Compostos Organosselênicos/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo , Animais , Estrutura Molecular , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA