Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Cardiovasc Diagn Ther ; 14(2): 294-303, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38716318

RESUMO

Background: Sarcomeric hypertrophic cardiomyopathy (HCM) must be differentiated from phenotypically similar conditions because clinical management and prognosis may greatly differ. Patients with unexplained left ventricular hypertrophy require an early, confirmed genetic diagnosis through diagnostic or predictive genetic testing. We tested the feasibility and practicality of the application of a 17-gene next-generation sequencing (NGS) panel to detect the most common genetic causes of HCM and HCM phenocopies, including treatable phenocopies, and report detection rates. Identification of transthyretin cardiac amyloidosis (ATTR-CA) and Fabry disease (FD) is essential because of the availability of disease-specific therapy. Early initiation of these treatments may lead to better clinical outcomes. Methods: In this international, multicenter, cross-sectional pilot study, peripheral dried blood spot samples from patients of cardiology clinics with an unexplained increased left ventricular wall thickness (LVWT) of ≥13 mm in one or more left ventricular myocardial segments (measured by imaging methods) were analyzed at a central laboratory. NGS included the detection of known splice regions and flanking regions of 17 genes using the Illumina NextSeq 500 and NovaSeq 6000 sequencing systems. Results: Samples for NGS screening were collected between May 2019 and October 2020 at cardiology clinics in Colombia, Brazil, Mexico, Turkey, Israel, and Saudi Arabia. Out of 535 samples, 128 (23.9%) samples tested positive for pathogenic/likely pathogenic genetic variants associated with HCM or HCM phenocopies with double pathogenic/likely pathogenic variants detected in four samples. Among the 132 (24.7%) detected variants, 115 (21.5%) variants were associated with HCM and 17 (3.2%) variants with HCM phenocopies. Variants in MYH7 (n=60, 11.2%) and MYBPC3 (n=41, 7.7%) were the most common HCM variants. The HCM phenocopy variants included variants in the TTR (n=7, 1.3%) and GLA (n=2, 0.4%) genes. The mean (standard deviation) ages of patients with HCM or HCM phenocopy variants, including TTR and GLA variants, were 42.8 (17.9), 54.6 (17.0), and 69.0 (1.4) years, respectively. Conclusions: The overall diagnostic yield of 24.7% indicates that the screening strategy effectively identified the most common forms of HCM and HCM phenocopies among geographically dispersed patients. The results underscore the importance of including ATTR-CA (TTR variants) and FD (GLA variants), which are treatable disorders, in the differential diagnosis of patients with increased LVWT of unknown etiology.

2.
Arch. endocrinol. metab. (Online) ; 68: e220475, 2024. tab
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1533665

RESUMO

ABSTRACT Objective: The aim of this study is to investigate the molecular genetic causes of non-syndromic primary ovarian insufficiency (POI) cases with the gene panel based on next generation sequencing analysis and to establish the relationship between genotype and phenotype. Subjects and methods: Twenty three cases aged 14-40 years followed up with POI were included. Patients with a karyotype of 46, XX, primary or secondary amenorrhea before the age of 40, with elevated FSH (>40 IU/mL) and low AMH levels (<0.03 ng/mL) were included in the study. Molecular genetic analyzes were performed by the next generation sequencing analysis method targeted with the TruSightTM Exome panel. Results: Median age of the cases was 17.8 (14.0-24.3) years, and 12 (52%) cases admitted before the age of 18. Fifteen (65%) patients had consanguineous parents. In 2 (8.6%) cases, variants detected were in genes that have been previously proven to cause POI. One was homozygous variant in FIGLA gene and the other was homozygous variant in PSMC3IP gene. Heterozygous variants were detected in PROK2, WDR11 and CHD7 associated with hypogonadotropic hypogonadism, but these variants are insufficient to contribute to the POI phenotype. Conclusion: Genetic panels based on next generation sequencing analysis technologies can be used to determine the molecular genetic diagnosis of POI, which has a highly heterogeneous genetic basis.

3.
Arch Endocrinol Metab ; 68: e220475, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37988663

RESUMO

Objective: The aim of this study is to investigate the molecular genetic causes of non-syndromic primary ovarian insufficiency (POI) cases with the gene panel basedon next generation sequencing analysis and to establish the relationship between genotype and phenotype. Materials and methods: Twenty three cases aged 14-40 years followed up with POI were included. Patients with a karyotype of 46, XX, primary or secondary amenorrhea before the age of 40, with elevated FSH (>40 IU/mL) and low AMH levels (<0.03 ng/mL) were included in the study. Molecular genetic analyzes were performed by the next generation sequencing analysis method targeted with the TruSight TM Exome panel. Results: Median age of the cases was 17.8 (14.0-24.3) years, and 12 (52%) cases admitted before the age of 18. Fifteen (65%) patients had consanguineous parents. In2 (8.6%) cases, variants detected were in genes that have been previously proven to cause POI. One was homozygous variant in FIGLA gene and the other was homozygous variant in PSMC3IP gene. Heterozygous variants were detected in PROK2, WDR11 and CHD7 associated with hypogonadotropic hypogonadism, but these variants are insufficient to contribute to the POI phenotype. Conclusion: Genetic panels based on next generation sequencing analysis technologies can be used to determine the molecular genetic diagnosis of POI, which has a highly heterogeneous genetic basis.


Assuntos
Insuficiência Ovariana Primária , Feminino , Humanos , Adolescente , Adulto Jovem , Adulto , Insuficiência Ovariana Primária/genética , Sequenciamento de Nucleotídeos em Larga Escala , Genótipo , Fenótipo , Biologia Molecular , Proteínas Nucleares/genética , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA