Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(6): 5909-5928, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38921024

RESUMO

Uropathogenic Escherichia coli (UPEC) is the main cause of urinary tract infections (UTIs) and carries virulence and resistance factors often found in mobilizable genetic elements, such as plasmids or pathogenicity islands (PAIs). UPEC is part of the extraintestinal pathogenic E. coli (ExPEC), but hybrid strains possessing both diarrheagenic E. coli (DEC) and ExPEC traits, termed "hypervirulent", present a significant health threat. This study assessed the prevalence of UPEC PAIs, ExPEC sequence types (ST), DEC genes, carbapenemase and extended-spectrum ß-lactamase (ESBL) phenotypes, resistance genotypes, and plasmids in 40 clinical isolates of UPEC. Results showed that 72.5% of isolates had PAIs, mainly PAI IV536 (53%). ESBL phenotypes were found in 65% of ß-lactam-resistant isolates, with 100% of carbapenem-resistant isolates producing carbapenemase. The predominant ESBL gene was blaCTX-M-2 (60%), and the most common resistance gene in fluoroquinolone and aminoglycoside-resistant isolates was aac(6')Ib (93%). Plasmids were present in 57% of isolates, and 70% belonged to the ST131 clonal group. Molecular markers for DEC pathotypes were detected in 20 isolates, with 60% classified as hybrid pathotypes. These findings indicate significant pathogenic potential and the presence of hybrid pathotypes in E. coli UTI clinical isolates in the Mexican population.

2.
J Fungi (Basel) ; 10(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38535195

RESUMO

Kodamaea ohmeri is an environmental yeast considered a rare emerging pathogen. In clinical settings, the correct identification of this yeast is relevant because some isolates are associated with resistance to antifungals. There is a lack of available data regarding the geographical distribution, virulence, and drug resistance profile of K. ohmeri. To contribute to the knowledge of this yeast, this study aimed to describe in depth three isolates of K. ohmeri associated with fungemia in Honduras. The identification of the isolates was carried out by sequencing the ribosomal ITS region. In addition, the susceptibility profile to antifungals was determined, and some properties associated with virulence were evaluated (exoenzyme production, biofilm formation, cell adhesion, and invasion). The isolates showed strong protease, phospholipase, and hemolysin activity, in addition to being biofilm producers. Adherence and invasion capacity were evident in the HeLa and Raw 264.7 cell lines, respectively. This study expands the understanding of the underlying biological traits associated with virulence in K. ohmeri, and it is the first report of the detection and identification of K. ohmeri in Honduras as a cause of human infection.

4.
Malar J ; 22(1): 57, 2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36805673

RESUMO

BACKGROUND: Vector populations are a key target for malaria control and elimination. In Honduras, there are at least 12 reported anopheline species, however, the definitive number of species remains uncertain. Due to the inherent limitations of morphological identification of Anopheles species, molecular approaches have been developed to provide accurate identification and robust surveillance of local malaria vectors. The aim of this study was to design and assess three PCR-RFLP assays to identify anopheline species known to presently occur in Honduras. METHODS: Mosquitoes captured between 2018 and 2022 in seven malaria-endemic and non-endemic departments in Honduras were analysed. The ITS2 ribosomal region and three restriction enzyme-based assays were evaluated in silico and experimentally. RESULTS: A total of 132 sequences from 12 anopheline species were analysed. The ITS2 marker showed length polymorphisms that generated products between 388 and 592 bp and no relevant intraspecies polymorphisms were found. Furthermore, the three PCR-RFLP assays were able to differentiate 11 species with sufficient precision and resolution. CONCLUSION: The ITS2 region was shown to be a useful molecular marker for identifying local Anopheles species. In addition, the PCR-RFLP assays evaluated here proved to be capable of discriminating most of the anopheline species present in Honduras. These methods provide alternatives to improve entomological surveillance of Anopheles in Honduras and other Mesoamerican countries.


Assuntos
Anopheles , Animais , Anopheles/genética , Polimorfismo de Fragmento de Restrição , Honduras , Mosquitos Vetores/genética , Reação em Cadeia da Polimerase
5.
Trop Med Infect Dis ; 7(8)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893657

RESUMO

The elimination of malaria requires strengthening diagnosis and offering adequate and timely treatment. Imported cases of falciparum malaria represent a major challenge for pre-elimination areas, such as Central America, where chloroquine and primaquine continue to be used as first-line treatment. The pfs47 gene has been previously described as a precise molecular marker to track the geographic origin of the parasite. The aim of this study was to design a simple and low-cost technique using the polymorphic region of pfs47 to assess the geographic origin of P. falciparum strains. A PCR-RFLP technique was developed and evaluated using the MseI enzyme that proved capable of discriminating, with reasonable precision, the geographical origin of the parasites. This method could be used by national surveillance laboratories and malaria elimination programs in countries such as Honduras and Nicaragua in cases of malaria where an origin outside the Central American isthmus is suspected.

6.
Pathogens ; 11(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35745474

RESUMO

Aedes aegypti is a hematophagous and highly anthropophilic mosquito with a wide distribution, particularly in tropical and subtropical regions of the world. Ae. aegypti is the main vector of several febrile diseases called arboviruses (dengue, yellow fever, chikungunya, and zika viruses), which represent an important public health problem. Populations of this mosquito were nearly eliminated from the Americas in the mid-20th century; however, after the abandonment of control measures, mosquito populations have been recovering territory, have expanded by anthropogenic mechanisms, and have been joined by new populations reintroduced from other continents. The objective of this pilot study was to determine the genetic variability of Aedes aegypti collected in four cities located along the so-called logistics corridor of Honduras, which connects the Caribbean Sea to the Pacific Ocean. We studied the sequences of two molecular markers: the cytochrome c oxidase 1 (COI mtDNA) gene and the internal transcribed spacer 2 (ITS2 rDNA) of 40 mosquitoes. Phylogenetic analyzes show two separate clades with a low number of nucleotide differences per site, three haplotypes, and low haplotype diversity. These results suggest a low genetic diversity in the populations of Ae. aegypti in Honduras in relation to that reported in other countries of the Central American isthmus.

7.
Diagnostics (Basel) ; 12(5)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35626361

RESUMO

The diagnosis of malaria in Honduras is based mainly on microscopic observation of the parasite in thick smears or the detection of parasite antigens through rapid diagnostic tests when microscopy is not available. The specific treatment of the disease depends exclusively on the positive result of one of these tests. Given the low sensitivity of conventional methods, new diagnostic approaches are needed. This study evaluates the in-field performance of a device (Gazelle™) based on the detection of hemozoin. This was a double-blind study evaluating symptomatic individuals with suspected malaria in the department of Gracias a Dios, Honduras, using blood samples collected from 2021 to 2022. The diagnostic performance of Gazelle™ was compared with microscopy and nested 18ssr PCR as references. The sensitivity and specificity of Gazelle™ were 59.7% and 98.6%, respectively, while microscopy had a sensitivity of 64.9% and a specificity of 100%. The kappa index between microscopy and Gazelle™ was 0.9216 using microscopy as a reference. Both methods show similar effectiveness and predictive values. No statistical differences were observed between the results of the Gazelle™ compared to light microscopy (p = 0.6831). The turnaround time was shorter for Gazelle™ than for microscopy, but the cost per sample was slightly higher for Gazelle™. Gazelle™ showed more false-negative cases when infections were caused by Plasmodium falciparum compared to P. vivax. Conclusions: The sensitivity and specificity of Gazelle™ are comparable to microscopy. The simplicity and ease of use of the Gazelle™, the ability to run on batteries, and the immediacy of its results make it a valuable tool for malaria detection in the field. However, further development is required to differentiate Plasmodium species, especially in those regions requiring differentiated treatment.

8.
Infect Dis Rep ; 14(2): 258-265, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35447883

RESUMO

Mucormycoses are rare but serious opportunistic fungal infections caused by filamentous organisms of the order Mucorales. Here we report the first molecular identification of Rhizopus oryzae (heterotypic synonym Rhizopus arrhizus), R. delemar, and Apophysomyces ossiformis as the etiological agents of three cases of severe mucormycosis in Honduras. Conventional microbiological cultures were carried out, and DNA was extracted from both clinical samples and axenic cultures. The ITS ribosomal region was amplified and sequenced. Molecular tools are suitable strategies for diagnosing and identifying Mucorales in tissues and cultures, especially in middle-income countries lacking routine diagnostic strategies.

9.
Mater Today Proc ; 49: 64-71, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35018285

RESUMO

At the end of 2019 in Wuhan China city, the outbreak of the virus called SARS-CoV 2 was originated, which later became a pandemic. In Ecuador, patient zero arrived on February 14, 2020 and the first mobility restriction imposed by the Government occurred on Tuesday, March 17 of the same year. Throughout the confinement, vehicle mobility restrictions have been modified by government entities depending on the number of infected people. This article presents an air quality study in the historic center of Cuenca city as consequence of mobility changes caused by Covid-19, where a comparison of concentration levels of polluting gases of the first semester of 2018, 2019 and 2020 is made, that allow differentiating and identifying the influence of vehicular flow on air quality. It can also be verified how the decrease in vehicle mobility restrictions influenced the increase in the rate of daily infections. For the study, air quality data published by the public mobility company of the city of Cuenca (EMOV EP) and the communications issued by the Emergency Operations Committee (COE), before and during the confinement, were collected. The acquisition, classification, analysis and interpretation of the data obtained through machine learning techniques was carried out. It can be concluded that while mobility restrictions were more severe, air quality improved and infections rate of decrease. Obtaining that polluting gases such as NO2 and CO produced by vehicular traffic show correlations of 61% and 60% respectively, which means that after 15 days of lifting the restrictive measures, the pollutants increased as well as the number of infected.

10.
Curr Med Mycol ; 8(3): 1-8, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37051554

RESUMO

Background and Purpose: Infections by emerging and multiresistant Candida species are becoming more frequent throughout the world. This study aimed to describe Candida species in different wards of a tertiary hospital in Honduras. Materials and Methods: The prevalence of species within the C. albicans complex was estimated using a molecular approach, and C. auris was investigated using a yeast pool-based DNA extraction method. In total, 328 yeast isolates were identified using phenotypic approaches. For the identification of species within the C. albicans complex, a molecular approach based on the size polymorphisms of the hpw1 gene was used. In addition, a technique was optimized based on DNA extraction in pools for the rapid identification of C. auris. Results: A total of 11 species of Candida were identified in the hospital wards. C. albicans showed the highest number of isolates (52.4%). Within the C. albicans complex, C. albicans sensu stricto was the most common, followed by C. dubliniensis. However, C. auris was not found. Conclusion: Reports on the distribution of Candida species in Honduras are limited; accordingly, the data from this study are of importance for a better understanding of their epidemiology. Moreover, a simple method was offered for the detection of C. auris that could help in its detection in low-resource settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA