Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12139, 2024 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802549

RESUMO

High-density lipoprotein cholesterol (HDL-c) removes cholesterol, an essential component in lipid rafts, and this cholesterol removal can regulate protein attachment to lipid rafts, modulating their functionality in the immune cell response. Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can alter the lipid profile, there is little information on the role of HDL-c and other lipids in prognostic of the coronavirus disease 2019 (COVID-19) in Mexican population. This study aims to evaluate the predictive value of HDL-c and lipid profile on severity and survival of 102 patients infected with SARS-CoV-2 during the COVID-19 first wave. Our findings, derived from univariate and multivariate Cox proportional hazards regression models, highlighted age and hypertension as significant predictors of survival (HR = 1.04, p = 0.012; HR = 2.78, p = 0.027), while gender, diabetes, and obesity showed no significant impact. Triglycerides and HDL-c levels notably influenced mortality, with elevated triglycerides and lower HDL-c associated with higher mortality risk (p = 0.032). This study underscores the importance of lipid profiles alongside traditional risk factors in assessing COVID-19 risk and outcomes. It contributes to the understanding of COVID-19 patient management and emphasizes the need for further investigation into the role of dyslipidemia in influencing COVID-19 prognosis, potentially aiding in refined risk stratification and therapeutic strategies.


Assuntos
COVID-19 , HDL-Colesterol , SARS-CoV-2 , Humanos , COVID-19/mortalidade , COVID-19/sangue , Masculino , Feminino , Pessoa de Meia-Idade , HDL-Colesterol/sangue , Adulto , Idoso , SARS-CoV-2/isolamento & purificação , Fatores de Risco , Triglicerídeos/sangue , Prognóstico , Lipídeos/sangue , México/epidemiologia , Dislipidemias/sangue , Modelos de Riscos Proporcionais , Hipertensão/sangue
2.
Infect Dis Rep ; 16(3): 458-471, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38804444

RESUMO

During the COVID-19 pandemic, a considerable proportion of patients developed a severe condition that included respiratory failure, shock, or multiple organ dysfunction. Acute Kidney Injury (AKI) has been recognized as a possible cause of severe COVID-19 development. Given this, this study investigates the occurrence and consequences of AKI in Mexican patients to contribute to better knowledge and management of this problem. Methods: Using a retrospective observational cohort methodology, we investigated 313 cases from a cohort of 1019 patients diagnosed with COVID-19 at the IMSS Zacatecas General Hospital of Zone No. 1 in 2020. The prevalence of AKI was determined using the AKIN criteria based on serum creatinine levels and a detailed review of demographic characteristics, medical history, comorbidities, and clinical development. Results: The data showed a 25.30% prevalence of AKI among patients infected with severe COVID-19. Remarkably, these patients with AKI exhibited an advanced age (>65 years), arterial hypertension, a higher number of white blood cells during admission and the hospital stay, and elevated levels of C-reactive protein, serum creatinine, and blood urea nitrogen (BUN). Clinically, patients with AKI had signs of prostration, pneumonia, and the requirement for ventilatory assistance when compared to those without AKI. Finally, those diagnosed with AKI and COVID-19 had a 74% death rate. Relative risk analyses indicated that age (>65 years), arterial hypertension, high creatinine levels, endotracheal intubation, and pneumonia are associated with the development of AKI. On the other hand, among the protective factors against AKI, high hemoglobin levels and the consumption of statins during COVID-19 were found. Conclusions: The findings of this study underscore the significance of promptly identifying and effectively managing AKI to potentially alleviate the negative consequences of this complication within the Mexican population during COVID-19.

3.
STAR Protoc ; 5(2): 102992, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38568816

RESUMO

Finding an effective therapy against diseases caused by flaviviruses remains a challenge. Here, we present a protocol to test Food and Drug Administration-approved drugs that inhibit host nuclear protein import, promoting a reduction of dengue infection. We describe steps for analyzing the drug effect on nuclear import inhibition of cellular and viral proteins by confocal microscopy or western blotting. We then describe procedures for measuring the antiviral drug effects on virus-infected cells by flow cytometry and testing drug efficacy in dengue-infected AG129 mice by survival assays. For complete details on the use and execution of this protocol, please refer to Palacios-Rápalo et al.1.


Assuntos
Antivirais , Vírus da Dengue , Dengue , Animais , Camundongos , Vírus da Dengue/efeitos dos fármacos , Antivirais/farmacologia , Humanos , Dengue/tratamento farmacológico , Dengue/virologia , United States Food and Drug Administration , Estados Unidos , Linhagem Celular
4.
Microorganisms ; 12(2)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38399787

RESUMO

Metformin (MET) and atorvastatin (ATO) are promising treatments for COVID-19. This review explores the potential of MET and ATO, commonly prescribed for diabetes and dyslipidemia, respectively, as versatile medicines against SARS-CoV-2. Due to their immunomodulatory and antiviral capabilities, as well as their cost-effectiveness and ubiquitous availability, they are highly suitable options for treating the virus. MET's effect extends beyond managing blood sugar, impacting pathways that can potentially decrease the severity and fatality rates linked with COVID-19. It can partially block mitochondrial complex I and stimulate AMPK, which indicates that it can be used more widely in managing viral infections. ATO, however, impacts cholesterol metabolism, a crucial element of the viral replicative cycle, and demonstrates anti-inflammatory characteristics that could modulate intense immune reactions in individuals with COVID-19. Retrospective investigations and clinical trials show decreased hospitalizations, severity, and mortality rates in patients receiving these medications. Nevertheless, the journey from observing something to applying it in a therapeutic setting is intricate, and the inherent diversity of the data necessitates carefully executed, forward-looking clinical trials. This review highlights the requirement for efficacious, easily obtainable, and secure COVID-19 therapeutics and identifies MET and ATO as promising treatments in this worldwide health emergency.

5.
Microorganisms ; 11(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38138038

RESUMO

COVID-19 has a mortality rate exceeding 5.4 million worldwide. The early identification of patients at a high risk of mortality is essential to save their lives. The AST-to-lymphocyte ratio index (ALRI) is a novel biomarker of survival in patients with hepatocellular carcinoma, an organ susceptible to SARS-CoV-2 infection. For this study, the prognostic value of ALRI as a marker of COVID-19 mortality was evaluated. For this purpose, ALRI was compared with the main biomarkers for COVID-19 mortality (neutrophil-to-lymphocyte ratio [NLR], systemic immune-inflammation index [SII], platelet-to-lymphocyte ratio [PLR], lactate dehydrogenase (LDH)/lymphocyte ratio [LDH/LR]). A retrospective cohort of 225 patients with SARS-CoV-2 infection and without chronic liver disease was evaluated. In the non-survival group, the ALRI, NLR, SII, and LDH/LR were significantly higher than in the survival group (pcorrected < 0.05). ALRI had an area under the curve (AUC) of 0.81, a sensitivity of 70.37%, and a specificity of 75%, with a best cut-off value >42.42. COVID-19 patients with high ALRI levels had a mean survival time of 7.8 days. Multivariate Cox regression revealed that ALRI > 42.42 (HR = 2.32, 95% CI: 1.35-3.97; pcorrected = 0.01) was a prognostic factor of COVID-19 mortality. These findings prove that ALRI is an independent predictor of COVID-19 mortality and that it may help identify high-risk subjects with SARS-CoV-2 infection upon admission.

6.
Microorganisms ; 11(9)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37764131

RESUMO

Monkeypox (Mpox) is an emerging zoonotic disease with the potential for severe complications. Early identification and diagnosis are essential to prompt treatment, control its spread, and reduce the risk of human-to-human transmission. This study aimed to develop a clinical diagnostic tool and describe the clinical and sociodemographic features of 19 PCR-confirmed Mpox cases during an outbreak in a nonendemic region of northwestern Mexico. The median age of patients was 35 years, and most were male. Mpox-positive patients commonly reported symptoms such as fever, lumbago, and asthenia, in addition to experiencing painful ulcers and a high frequency of HIV infection among people living with HIV (PLWH). Two diagnostic models using logistic regression were devised, with the best model exhibiting a prediction accuracy of 0.92 (95% CI: 0.8-1), a sensitivity of 0.86, and a specificity of 0.93. The high predictive values and accuracy of the top-performing model highlight its potential to significantly improve early Mpox diagnosis and treatment in clinical settings, aiding in the control of future outbreaks.

7.
Viruses ; 15(7)2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37515153

RESUMO

Flaviviruses, including Dengue (DENV), Zika (ZIKV), and Yellow Fever (YFV) viruses, represent a significant global health burden. The development of effective antiviral therapies against these viruses is crucial to mitigate their impact. This study investigated the antiviral potential of the cholesterol-lowering drugs atorvastatin and ezetimibe in monotherapy and combination against DENV, ZIKV, and YFV. In vitro results demonstrated a dose-dependent reduction in the percentage of infected cells for both drugs. The combination of atorvastatin and ezetimibe showed a synergistic effect against DENV 2, an additive effect against DENV 4 and ZIKV, and an antagonistic effect against YFV. In AG129 mice infected with DENV 2, monotherapy with atorvastatin or ezetimibe significantly reduced clinical signs and increased survival. However, the combination of both drugs did not significantly affect survival. This study provides valuable insights into the potential of atorvastatin and ezetimibe as antiviral agents against flaviviruses and highlights the need for further investigations into their combined therapeutic effects.


Assuntos
Vírus da Dengue , Dengue , Infecções por Flavivirus , Flavivirus , Infecção por Zika virus , Zika virus , Animais , Camundongos , Antivirais/farmacologia , Antivirais/uso terapêutico , Atorvastatina , Reposicionamento de Medicamentos , Ezetimiba , Colesterol
8.
J Virol ; 97(1): e0177322, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36475764

RESUMO

Flaviviruses have a cytoplasmic replicative cycle, and crucial events, such as genome translation and replication, occur in the endoplasmic reticulum. However, some viral proteins, such as C, NS1, and NS5 from Zika virus (ZIKV) containing nuclear localization signals (NLSs) and nuclear export signals (NESs), are also located in the nucleus of Vero cells. The NS2A, NS3, and NS4A proteins from dengue virus (DENV) have also been reported to be in the nucleus of A549 cells, and our group recently reported that the NS3 protein is also located in the nucleus of Huh7 and C636 cells during DENV infection. However, the NS3 protease-helicase from ZIKV locates in the perinuclear region of infected cells and alters the morphology of the nuclear lamina, a component of the nuclear envelope. Furthermore, ZIKV NS3 has been reported to accumulate on the concave face of altered kidney-shaped nuclei and may be responsible for modifying other elements of the nuclear envelope. However, nuclear localization of NS3 from ZIKV has not been substantially investigated in human host cells. Our group has recently reported that DENV and ZIKV NS3 alter the nuclear pore complex (NPC) by cleaving some nucleoporins. Here, we demonstrate the presence of ZIKV NS3 in the nucleus of Huh7 cells early in infection and in the cytoplasm at later times postinfection. In addition, we found that ZIKV NS3 contains an NLS and a putative NES and uses the classic import (importin-α/ß) and export pathway via CRM-1 to be transported between the cytoplasm and the nucleus. IMPORTANCE Flaviviruses have a cytoplasmic replication cycle, but recent evidence indicates that nuclear elements play a role in their viral replication. Viral proteins, such as NS5 and C, are imported into the nucleus, and blocking their import prevents replication. Because of the importance of the nucleus in viral replication and the role of NS3 in the modification of nuclear components, we investigated whether NS3 can be localized in the nucleus during ZIKV infection. We found that NS3 is imported into the nucleus via the importin pathway and exported to the cytoplasm via CRM-1. The significance of viral protein nuclear import and export and its relationship with infection establishment is highlighted, emphasizing the development of new host-directed antiviral therapeutic strategies.


Assuntos
Transporte Ativo do Núcleo Celular , Carioferinas , Proteínas não Estruturais Virais , Zika virus , Animais , Humanos , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo , Chlorocebus aethiops , Carioferinas/metabolismo , Sinais de Localização Nuclear/metabolismo , Células Vero , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Zika virus/genética , Infecção por Zika virus , Vírus da Dengue
9.
Iran J Immunol ; 19(3): 311-320, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36190384

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is an emergent viral disease in which the host inflammatory response modulates the clinical outcome. Severe outcomes are associated with an exacerbation of inflammation in which chemokines play an important role as the attractants of immune cells to the tissues. OBJECTIVE: To evaluate the relationship of the chemokines IL-8, RANTES, MIG, MCP-1, and IP-10 with COVID-19 severity and outcomes in Mexican patients. METHODS: We analyzed the serum levels of IL-8, RANTES, MIG, MCP-1 and IP-10 in 148 COVID-19 hospitalized patients classified as mild (n=20), severe (n=61), and critical (n=67), as well as in healthy individuals (n=10), by flow cytometry bead array assay. RESULTS: Chemokine levels were higher in patients than in the healthy individuals, but only MIG, MCP-1, and IP-10 increased according to the disease severity, showing the highest levels in the critical group. MIG, MCP-1, and IP-10 levels were also higher in COVID-19 patients with comorbidities such as renal disease, type 2 diabetes, and hypertension. Moreover, elevated MIG levels seem to be related to organic failure/shock, and an increased risk of death. CONCLUSIONS: Our results suggest that the increased levels of MCP-1, IP-10, and especially MIG might be useful in predicting severe COVID-19 outcomes and could be promising therapeutic targets.


Assuntos
COVID-19 , Quimiocina CXCL9 , COVID-19/mortalidade , Quimiocina CCL5 , Quimiocina CXCL10 , Quimiocina CXCL9/metabolismo , Humanos , Interleucina-8 , México
10.
Trop Med Infect Dis ; 7(2)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35202215

RESUMO

COVID-19 and dengue disease are challenging to tell apart because they have similarities in clinical and laboratory features during the acute phase of infection, leading to misdiagnosis and delayed treatment. The present study evaluated peripheral blood cell count accuracy to distinguish COVID-19 non-critical patients from non-severe dengue cases between the second and eleventh day after symptom onset. A total of 288 patients infected with SARS-CoV-2 (n = 105) or dengue virus (n = 183) were included in this study. Neutrophil, platelet, and lymphocyte counts were used to calculate the neutrophil-lymphocyte ratio (NLR), the platelet-lymphocyte ratio (PLR), and the neutrophil-lymphocyte*platelet ratio (NLPR). The logistic regression and ROC curves analysis revealed that neutrophil and platelet counts, NLR, LPR, and NLPR were higher in COVID-19 than dengue. The multivariate predictive model showed that the neutrophils, platelets, and NLPR were independently associated with COVID-19 with a good fit predictive value (p = 0.1041). The neutrophil (AUC = 0.95, 95% CI = 0.84-0.91), platelet (AUC = 0.89, 95% CI = 0.85-0.93) counts, and NLR (AUC = 0.88, 95% CI = 0.84-0.91) were able to discriminate COVID-19 from dengue with high sensitivity and specificity values (above 80%). Finally, based on predicted probabilities on combining neutrophils and platelets with NLR or NLPR, the adjusted AUC was 0.97 (95% CI = 0.94-0.98) to differentiate COVID-19 from dengue during the acute phase of infection with outstanding accuracy. These findings might suggest that the neutrophil, platelet counts, and NLR or NLPR provide a quick and cost-effective way to distinguish between dengue and COVID-19 in the context of co-epidemics in low-income tropical regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA