Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Pain ; 25(8): 104513, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38521145

RESUMO

Bestrophin-1, a calcium-activated chloride channel (CaCC), is involved in neuropathic pain; however, it is unclear whether it has a dimorphic role in female and male neuropathic rats. This study investigated if 17ß-estradiol and estrogen receptor alpha (ERα) activation regulate bestrophin-1 activity and expression in neuropathic rats. Neuropathic pain was induced by L5-spinal nerve transection (SNT). Intrathecal administration of CaCCinh-A01 (.1-1 µg), a CaCC blocker, reversed tactile allodynia induced by SNT in female but not male rats. In contrast, T16Ainh-A01, a selective anoctamin-1 blocker, had an equal antiallodynic effect in both sexes. SNT increased bestrophin-1 protein expression in injured L5 dorsal root ganglia (DRG) in female rats but decreased bestrophin-1 protein in L5 DRG in male rats. Ovariectomy prevented the antiallodynic effect of CaCCinh-A01, but 17ß-estradiol replacement restored it. The effect of CaCCinh-A01 was prevented by intrathecal administration of MPP, a selective ERα antagonist, in rats with and without prior hormonal manipulation. In female rats with neuropathy, ovariectomy prevented the increase in bestrophin-1 and ERα protein expression, while 17ß-estradiol replacement allowed for an increase in both proteins in L5 DRG. Furthermore, ERα antagonism (with MPP) prevented the increase in bestrophin-1 and ERα protein expression. Finally, ERα activation with PPT, an ERα selective activator, induced the antiallodynic effect of CaCCinh-A01 in neuropathic male rats and prevented the reduction in bestrophin-1 protein expression in L5 DRG. In summary, data suggest ERα activation is necessary for bestrophin-1's pronociceptive action to maintain neuropathic pain in female rats. PERSPECTIVE: The mechanisms involved in neuropathic pain differ between male and female animals. Our data suggest that ERα is necessary for expression and function of bestrophin-1 in neuropathic female but not male rats. Data support the idea that a therapeutic approach to relieving neuropathic pain must be based on patient's gender.


Assuntos
Bestrofinas , Estradiol , Receptor alfa de Estrogênio , Gânglios Espinais , Neuralgia , Caracteres Sexuais , Animais , Masculino , Feminino , Neuralgia/metabolismo , Neuralgia/tratamento farmacológico , Ratos , Receptor alfa de Estrogênio/metabolismo , Estradiol/farmacologia , Estradiol/administração & dosagem , Bestrofinas/metabolismo , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Ratos Sprague-Dawley , Hiperalgesia/metabolismo , Hiperalgesia/tratamento farmacológico , Modelos Animais de Doenças , Ovariectomia
2.
Front Physiol ; 14: 1286808, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033343

RESUMO

CaVγ2 (Stargazin or TARPγ2) is a protein expressed in various types of neurons whose function was initially associated with a decrease in the functional expression of voltage-gated presynaptic Ca2+ channels (CaV) and which is now known to promote the trafficking of the postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPAR) towards the cell membrane. Alterations in CaVγ2 expression has been associated with several neurological disorders, such as absence epilepsy. However, its regulation at the transcriptional level has not been intensively addressed. It has been reported that the promoter of the Cacng2 gene, encoding the rat CaVγ2, is bidirectional and regulates the transcription of a long non-coding RNA (lncRNA) in the antisense direction. Here, we investigate the proximal promoter region of the human CACNG2 gene in the antisense direction and show that this region includes two functional cAMP response elements that regulate the expression of a lncRNA called CACNG2-DT. The activity of these sites is significantly enhanced by forskolin, an adenylate cyclase activator, and inhibited by H89, a protein kinase A (PKA) antagonist. Therefore, this regulatory mechanism implies the activation of G protein-coupled receptors and downstream phosphorylation. Interestingly, we also found that the expression of CACNG2-DT may increase the levels of the CaVγ2 subunit. Together, these data provide novel information on the organization of the human CACNG2-DT gene promoter, describe modulatory domains and mechanisms that can mediate various regulatory inputs, and provide initial information on the molecular mechanisms that regulate the functional expression of the CaVγ2 protein.

3.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37628737

RESUMO

Spermatogenesis is a very complex process with an intricate transcriptional regulation. The transition from the diploid to the haploid state requires the involvement of specialized genes in meiosis, among other specific functions for the formation of the spermatozoon. The transcription factor cAMP-response element modulator (CREM) is a key modulator that triggers the differentiation of the germ cell into the spermatozoon through the modification of gene expression. CREM has multiple repressor and activator isoforms whose expression is tissue-cell-type specific and tightly regulated by various factors at the transcriptional, post-transcriptional and post-translational level. The activator isoform CREMτ controls the expression of several relevant genes in post-meiotic stages of spermatogenesis. In addition, exposure to xenobiotics negatively affects CREMτ expression, which is linked to male infertility. On the other hand, antioxidants could have a positive effect on CREMτ expression and improve sperm parameters in idiopathically infertile men. Therefore, CREM expression could be used as a biomarker to detect and even counteract male infertility. This review examines the importance of CREM as a transcription factor for sperm production and its relevance in male fertility, infertility and the response to environmental xenobiotics that may affect CREMτ expression and the downstream regulation that alters male fertility. Also, some health disorders in which CREM expression is altered are discussed.


Assuntos
Infertilidade Masculina , Xenobióticos , Masculino , Humanos , Sêmen , Espermatogênese/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Infertilidade Masculina/genética , Meiose , Elementos de Resposta , Fertilidade/genética , Modulador de Elemento de Resposta do AMP Cíclico/genética
4.
J Pain ; 24(4): 689-705, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36521670

RESUMO

Previous studies have reported that L5/L6 spinal nerve ligation (SNL), but not L5 spinal nerve transection (SNT), enhances anoctamin-1 in injured and uninjured dorsal root ganglia (DRG) of rats suggesting some differences in function of the type of nerve injury. The role of bestrophin-1 in these conditions is unknown. The aim of this study was to investigate the role of bestrophin-1 in rats subjected to L5 SNT and L5/L6 SNL. SNT up-regulated bestrophin-1 protein expression in injured L5 and uninjured L4 DRG at day 7, whereas it enhanced GAP43 mainly in injured, but also in uninjured DRG. In contrast, SNL enhanced GAP43 at day 1 and 7, while bestrophin-1 expression increased only at day 1 after nerve injury. Accordingly, intrathecal injection of the bestrophin-1 blocker CaCCinh-A01 (1-10 µg) reverted SNT- or SNL-induced tactile allodynia in a concentration-dependent manner. Intrathecal injection of CaCCinh-A01 (10 µg) prevented SNT-induced upregulation of bestrophin-1 and GAP43 at day 7. In contrast, CaCCinh-A01 did not affect SNL-induced up-regulation of GAP43 nor bestrophin-1. Bestrophin-1 was mainly expressed in small- and medium-size neurons in naïve rats, while SNT increased bestrophin-1 immunoreactivity in CGRP+, but not in IB4+ neuronal cells in DRG. Intrathecal injection of bestrophin-1 plasmid (pCMVBest) induced tactile allodynia and increased bestrophin-1 expression in DRG and spinal cord in naïve rats. CaCCinh-A01 reversed bestrophin-1 overexpression-induced tactile allodynia and restored bestrophin-1 expression. Our data suggest that bestrophin-1 plays a relevant role in neuropathic pain induced by SNT, but not by SNL. PERSPECTIVE: SNT, but not SNL, up-regulates bestrophin-1 and GAP43 protein expression in injured L5 and uninjured L4 DRG. SNT increases bestrophin-1 immunoreactivity in CGRP+ neurons in DRG. Bestrophin-1 overexpression induces allodynia. CaCCinh-A01 reduces allodynia and restores bestrophin-1 expression. Our data suggest bestrophin-1 is differentially regulated depending on the neuropathic pain model.


Assuntos
Hiperalgesia , Neuralgia , Ratos , Animais , Bestrofinas/metabolismo , Hiperalgesia/metabolismo , Ratos Sprague-Dawley , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Neuralgia/metabolismo , Nervos Espinhais/lesões , Ligadura , Canais de Cloreto/metabolismo , Gânglios Espinais/metabolismo
5.
FEBS Open Bio ; 12(12): 2236-2249, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36345591

RESUMO

CATSPER2 (Cation channel sperm-associated protein 2) protein, which is part of the calcium CATSPER channel located in the membrane of the flagellar principal piece of the sperm cell, is only expressed in the testis during spermatogenesis. Deletions or mutations in the Catsper2 gene are associated with the deafness-infertility syndrome (DIS) and non-syndromic male infertility. However, the mechanisms by which Catsper2 is regulated are unknown. Here, we report the characterization of the promoter region of murine Catsper2 and the role of CTCF and CREMτ in its transcription. We report that the promoter region has transcriptional activity in both directions, as determined by observing luciferase activity in mouse Sertoli and GC-1 spg transfected cells. WGBS data analysis indicated that a CpG island identified in silico is non-methylated; Chromatin immunoprecipitation (ChIP)-seq data analysis revealed that histone marks H3K4me3 and H3K36me3 are present in the promoter and body of the Catsper2 gene respectively, indicating that Catsper2 is subject to epigenetic regulation. In addition, the murine Catsper2 core promoter was delimited to a region between -54/+189 relative to the transcription start site (TSS), where three CTCF and one CRE binding site were predicted. The functionality of these sites was determined by mutation of the CTCF sites and deletion of the CRE site. Finally, ChIP assays confirmed that CREMτ and CTCF bind to the Catsper2 minimal promoter region. This study represents the first functional analysis of the murine Catsper2 promoter region and the mechanisms that regulate its expression.


Assuntos
Canais de Cálcio , Epigênese Genética , Regiões Promotoras Genéticas , Proteínas de Plasma Seminal , Animais , Masculino , Camundongos , Sítios de Ligação , Canais de Cálcio/genética , Regulação da Expressão Gênica , Proteínas de Plasma Seminal/genética
6.
Arch Med Res ; 53(6): 625-633, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36109203

RESUMO

BACKGROUND: The true prevalence of Chagas disease in Mexico is unknown. However, it has been estimated that 1.1-4 million people are infected with Trypanosoma cruzi, which represents a potential risk for transmission of the disease via contaminated blood. AIM OF THE STUDY: To determine the Chagas disease seroprevalence in donors from eight blood banks in the north of Mexico City, and the northeast of the State of Mexico. STUDY DESIGN AND METHODS: Serum samples from blood donors (n = 515,038) were tested to detect the presence of anti-Trypanosoma cruzi antibodies in eight blood banks. The serologic screening test was performed in each of the blood banks. To confirm the seropositive blood donors, only two out of the eight blood banks used a test with a different principle with the aim of identifying anti-Trypanosoma cruzi antibodies. All tests were validated by the Mexican Institute for Epidemiological Diagnosis and Reference. RESULTS: One thousand two hundred and ten blood donors were seropositive for Trypanosoma cruzi, which represents a 0.23% seroprevalence (95% CI 0.22-0.25%). Of the seropositive blood donors, 97.03 % resided in the northeast area of the State of Mexico, Mexico City, and southern part of the State of Hidalgo. CONCLUSIONS: Active transmission of Chagas disease may be occurring in non-endemic regions in the northeast of the State of Mexico.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Anticorpos Antiprotozoários , Bancos de Sangue , Doença de Chagas/diagnóstico , Doença de Chagas/epidemiologia , Humanos , México/epidemiologia , Estudos Soroepidemiológicos
7.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897646

RESUMO

The CatSper channel localizes exclusively in the flagella of sperm cells. The Catsper1 protein, together with three pore units, is essential for the CatSper Channel formation, which produces flagellum hyperactivation and confers sperm fertility. Catsper1 expression is dependent on Sox transcription factors, which can recognize in vitro at least three Sox binding sites on the promoter. Sox transcription factors have calmodulin-binding domains for nuclear importation. Calmodulin (CaM) is affected by the specific inhibitor calmidazolium (CMZ), which prevents the nuclear transport of Sox factors. In this work, we assess the regulation of the Catsper1 promoter in vivo by Sox factors in the murine testis and evaluate the effects of the inhibitor calmidazolium on the expression of the Casper genes, and the motility and fertility of the sperm. Catsper1 promoter has significant transcriptional activity in vivo; on the contrary, three Sox site mutants in the Catsper1 promoter reduced transcriptional activity in the testis. CaM inhibition affects Sox factor nuclear transport and has notable implications in the expression and production of Catsper1, as well as in the motility and fertility capability of sperm. The molecular mechanism described here might conform to the basis of a male contraceptive strategy acting at the transcriptional level by affecting the production of the CatSper channel, a fundamental piece of male fertility.


Assuntos
Canais de Cálcio , Calmodulina , Animais , Canais de Cálcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Regulação para Baixo , Fertilidade , Imidazóis , Masculino , Camundongos , Fatores de Transcrição SOX/genética , Sêmen/metabolismo , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/metabolismo
8.
Int J Mol Sci ; 22(1)2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33406808

RESUMO

Polyamines are ubiquitous polycationic compounds that are highly charged at physiological pH. While passing through the epididymis, sperm lose their capacity to synthesize the polyamines and, upon ejaculation, again come into contact with the polyamines contained in the seminal fluid, unleashing physiological events that improve sperm motility and capacitation. In the present work, we hypothesize about the influence of polyamines, namely, spermine, spermidine, and putrescine, on the activity of sperm channels, evaluating the intracellular concentrations of chloride [Cl-]i, calcium [Ca2+]i, sodium [Na+]i, potassium [K+]i, the membrane Vm, and pHi. The aim of this is to identify the possible regulatory mechanisms mediated by the polyamines on sperm-specific channels under capacitation and non-capacitation conditions. The results showed that the presence of polyamines did not directly influence the activity of calcium and chloride channels. However, the results suggested an interaction of polyamines with sodium and potassium channels, which may contribute to the membrane Vm during capacitation. In addition, alkalization of the pHi revealed the possible activation of sperm-specific Na+/H+ exchangers (NHEs) by the increased levels of cyclic AMP (cAMP), which were produced by soluble adenylate cyclase (sAC) and interact with the polyamines, evidence that is supported by in silico analysis.


Assuntos
Canais Iônicos/fisiologia , Poliaminas/farmacologia , Capacitação Espermática/efeitos dos fármacos , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/fisiologia , Animais , Cálcio/metabolismo , AMP Cíclico/metabolismo , Canais Iônicos/efeitos dos fármacos , Masculino , Potenciais da Membrana , Camundongos , Potássio/metabolismo , Espermatozoides/efeitos dos fármacos
9.
J Neurochem ; 157(6): 2039-2054, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33006141

RESUMO

PKC and PKA phosphorylation inhibit TREK-1 channels downstream of Gs protein-coupled receptor activation in vitro. However, the role of phosphorylation of TREK-1 in neuropathic pain is unknown. The purpose of this study was to investigate whether altered TREK-1 channel function by PKA and PKC modulators contributes to antiallodynia in neuropathic rats. Furthermore, we investigated if the in vitro described sites for PKC and PKA phosphorylation (S300 and S333, respectively) participate in the modulation of TREK-1 in naïve and neuropathic rats. L5/L6 spinal nerve ligation (SNL) induced tactile allodynia. Intrathecal injection of BL-1249 (TREK-1 activator) reversed nerve injury-induced tactile allodynia, whereas spadin (TREK-1 blocker) produced tactile allodynia in naïve rats and reversed the antiallodynic effect induced by BL-1249 in neuropathic rats. Intrathecal administration of rottlerin or Rp-cAMPs (PKC and PKA inhibitors, respectively) enhanced the antiallodynia observed with BL-1249 in neuropathic rats. In contrast, pretreatment with PdBu or forskolin (PKC and PKA activators, respectively) reduced the BL-1249-induced antiallodynia. Intrathecal injection of two high-activity TREK-1 recombinant channels, using a in vivo transfection method with lipofectamine, with mutations at PKC/PKA phosphosites (S300A and S333A) reversed tactile allodynia in neuropathic rats, with no effect in naïve rats. In contrast, transfection of two low-activity TREK-1 recombinant channels with phosphomimetic mutations at those sites (S300D and S333D) produced tactile allodynia in naïve rats and interfered with antiallodynic effects of rottlerin/BL-1249 or Rp-cAMPs/BL-1249. Data suggest that TREK-1 channel activity can be dynamically tuned in vivo by PKC/PKA to provoke allodynia and modulate its antiallodynic role in neuropathic pain.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Neuralgia/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Proteína Quinase C/metabolismo , Animais , Feminino , Injeções Espinhais , Camundongos , Neuralgia/tratamento farmacológico , Medição da Dor/métodos , Peptídeos/administração & dosagem , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Canais de Potássio de Domínios Poros em Tandem/agonistas , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Ratos , Ratos Wistar , Tetra-Hidronaftalenos/administração & dosagem , Tetrazóis/administração & dosagem
10.
Mol Biotechnol ; 62(3): 200-209, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32030628

RESUMO

Tryptophan hydroxylase-type 2 (Tph2) is the first rate-limiting step in the biosynthesis of serotonin (5-HT) in the brain. The ophthalmic administration (Op-Ad) is a non-invasive method that allows delivering genetic vehicles through the eye and reaches the brain. Here, the murine Tph2 gene was cloned in a non-viral vector (pIRES-hrGFP-1a), generating pIRES-hrGFP-1a-Tph2, plus the FLAG-tag. Recombinant Tph2-FLAG was detected and tested in vitro and in vivo, where 25 µg of pIRES-hrGFP-1a-Tph2-FLAG was Op-Ad to mice. The construct was capable of expressing and producing the recombinant Tph2-FLAG in vitro and in vivo. The in vivo assays showed that the construct efficiently crossed the Hemato-Ocular Barrier and the Blood-Brain Barrier, reached brain cells, passed the optical nerves, and transcribed mRNA-Tph2-FLAG in different brain areas. The recombinant Tph2-FLAG was observed in amygdala and brainstem, mainly in raphe dorsal and medial. Relative Tph2 expression of threefold over basal level was recorded three days after Op-Ad. These results demonstrated that pIRES-hrGFP-Tph2-FLAG, administrated through the eyes was capable of reaching the brain, transcribing, and translating Tph2. In conclusion, this study showed the feasibility of delivering therapeutic genes, such as the Tph2, the first enzyme, rate-limiting step in the 5-HT biosynthesis.


Assuntos
Barreira Hematoencefálica/metabolismo , Expressão Gênica , Nervo Óptico/metabolismo , Plasmídeos , Proteínas Recombinantes de Fusão , Triptofano Hidroxilase , Administração Oftálmica , Animais , Barreira Hematoencefálica/citologia , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nervo Óptico/citologia , Plasmídeos/genética , Plasmídeos/farmacocinética , Plasmídeos/farmacologia , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Triptofano Hidroxilase/biossíntese , Triptofano Hidroxilase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA