Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Pediatr ; 183: 170-177.e1, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28139241

RESUMO

OBJECTIVE: To describe the clinical, biochemical, and genetic features of patients with congenital disorders of glycosylation (CDG) identified in Spain during the last 20 years. STUDY DESIGN: Patients were selected among those presenting with multisystem disease of unknown etiology. The isoforms of transferrin and of ApoC3 and dolichols were analyzed in serum; phosphomannomutase and mannosephosphate isomerase activities were measured in fibroblasts. Conventional or massive parallel sequencing (customized panel or Illumina Clinical-Exome Sequencing TruSight One Gene Panel) was used to identify genes and mutations. RESULTS: Ninety-seven patients were diagnosed with 18 different CDG. Eighty-nine patients had a type 1 transferrin profile; 8 patients had a type 2 transferrin profile, with 6 of them showing an alteration in the ApoC3 isoform profile. A total of 75% of the patients had PMM2-CDG presenting with a heterogeneous mutational spectrum. The remaining patients showed mutations in any of the following genes: MPI, PGM1, GFPT1, SRD5A3, DOLK, DPGAT1, ALG1, ALG6, RFT1, SSR4, B4GALT1, DPM1, COG6, COG7, COG8, ATP6V0A2, and CCDC115. CONCLUSION: Based on literature and on this population-based study of CDG, a comprehensive scheme including reported clinical signs of CDG is offered, which will hopefully reduce the timeframe from clinical suspicion to genetic confirmation. The different defects of CDG identified in Spain have contributed to expand the knowledge of CDG worldwide. A predominance of PMM2 deficiency was detected, with 5 novel PMM2 mutations being described.


Assuntos
Acetiltransferases/metabolismo , Apolipoproteínas C/metabolismo , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/epidemiologia , Acetiltransferases/genética , Apolipoproteínas C/genética , Estudos de Coortes , Bases de Dados Factuais , Feminino , Marcadores Genéticos , Predisposição Genética para Doença , Testes Genéticos/métodos , Humanos , Incidência , Recém-Nascido , Masculino , Mutação , Estudos Retrospectivos , Medição de Risco , Espanha/epidemiologia
2.
J. inborn errors metab. screen ; 5: e160032, 2017. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1090932

RESUMO

Abstract Genetic defects affecting the remethylation pathway cause hyperhomocysteinemia. Isolated remethylation defects are caused by mutations of the 5, 10-methylenetetrahydrofolate reductase (MTHFR), methionine synthase reductase(MTRR), methionine synthase(MTR), and MMADHC genes, and combined remethylation defects are the result of mutations in genes involved in the synthesis of either methylcobalamin or adenosylcobalamin, that is, the active cofactors of MTRR and methylmalonyl-CoA mutase. Diagnosis is based on the biochemical analysis of amino acids, homocysteine, propionylcarnitine, methylmalonic acid, S-adenosylmethionine, and 5-methylentetrahydrofolate in physiological fluids. Gene-by-gene Sanger sequencing has long been the gold standard genetic analysis for confirming the disorder and identifying the gene involved, but massive parallel sequencing is now being used to examine all those potentially involved in one go. Early treatment to rescue metabolic homeostasis is based on the following of an appropriate diet, betaine administration, and, in some cases, oral or intramuscular administration of vitamin B12 or folate. Elevated ROS levels, apoptosis, endoplasmic reticulum (ER) stress, the activation of autophagy, and alterations in Ca2+ homeostasis may all contribute toward the pathogenesis of the disease. Pharmacological agents to restore the function of the ER and mitochondria and/or to reduce oxidative stress-induced apoptosis might provide novel ways of treating patients with remethylation disorders.

3.
Hum Mutat ; 30(3): E520-9, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19177531

RESUMO

3-Hydroxy-3-methylglutaric aciduria is a rare autosomal recessive genetic disorder that affects ketogenesis and L-leucine catabolism. The clinical acute symptoms include vomiting, convulsions, metabolic acidosis, hypoketotic hypoglycaemia and lethargy. To date, 33 mutations in 100 patients have been reported in the HMGCL gene. In this study 10 new mutations in 24 patients are described. They include: 5 missense mutations: c.109G>A, c.425C>T, c.521G>A, c.575T>C and c.598A>T, 2 nonsense mutations: c.242G>A and c.559G>T, one small deletion: c.853delC, and 2 mutations in intron regions: c.497+4A>G and c.750+1G>A. Two prevalent mutations were detected, 109G>T (E37X) in 38% of disease alleles analyzed and c.504_505delCT in 10% of them. Although patients are mainly of European origin (71%) and mostly Spanish (54%), the group is ethnically diverse and includes, for the first time, patients from Pakistan, Palestine and Ecuador. We also present a simple, efficient method to express the enzyme and we analyze the possible functional effects of missense mutations. The finding that all identified missense mutations cause a >95% decrease in the enzyme activity, indicates that the disease appears only in very severe genotypes."


Assuntos
Meglutol/metabolismo , Erros Inatos do Metabolismo/genética , Mutação , Oxo-Ácido-Liases/genética , Alelos , Sequência de Aminoácidos , Árabes/genética , Domínio Catalítico/genética , Análise Mutacional de DNA , Equador , Europa (Continente) , Frequência do Gene , Genótipo , Humanos , Cinética , Erros Inatos do Metabolismo/etnologia , Erros Inatos do Metabolismo/patologia , Modelos Moleculares , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Oxo-Ácido-Liases/química , Oxo-Ácido-Liases/metabolismo , Paquistão , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
4.
Hum Mutat ; 27(3): 296, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16470595

RESUMO

Homocystinuria is an autosomal recessive disease most commonly caused by mutations in cystathionine beta-synthase (CBS). In this study we present the mutation analysis of 36 Colombian individuals from 10 unrelated kindred, with 11 individuals clinically classified as homocystinuric. Mutation analysis of the CBS gene revealed p.T191M, a prevalent mutation in Spain and Portugal, in the homozygous state in seven of the unrelated patients. Genotype-phenotype assessment of the p.T191M homozygous patients showed a high level of variability, including different severity in one pair of affected siblings. None of the patients responded biochemically to treatment with pharmacological doses of pyridoxine and folic acid as revealed by essentially unchanged homocysteine levels. This study offered a unique opportunity to study 18 heterozygous (p.T191M/wt) relatives of the homocystinuric patients. One atypical finding was that many of them presented with above average total homocysteine levels, putting them at an increased risk for vascular disease. Cryptorchidism was present in three of the cases, one of which presented also with Klinefelter syndrome. In addition to the previously described p.T191M mutation, a new mutation, p.A288T, was identified in a single individual. In this paper we present the first characterization, at a molecular level, of patients with homocystinuria from Colombia.


Assuntos
Cistationina beta-Sintase/genética , Homocistinúria/genética , Adolescente , Criança , Pré-Escolar , Colômbia , Criptorquidismo/genética , Análise Mutacional de DNA , Feminino , Homozigoto , Humanos , Lactente , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA