Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(12): e22876, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38144307

RESUMO

Undoped and Fe-doped NiO nanoparticles were successfully synthesized using a lyophilization method and systematically characterized through magnetization techniques over a wide temperature range, with varying intensity and frequency of the applied magnetic fields. The Ni1-xFexO nanoparticles can be described by a core-shell model, which reveals that Fe doping enhances exchange interactions in correlation with nanoparticle size reduction. The nanoparticles exhibit a superparamagnetic blocking transition, primarily attributed to their cores, at temperatures ranging from above room temperature to low temperatures, depending on the Fe-doping level and sample synthesis temperature. The nanoparticle shells also exhibit a transition at low temperatures, in this case to a cluster-glass-like state, caused by the dipolar magnetic interactions between the net magnetic moments of the clusters. Their freezing temperature shifts to higher temperatures as the Fe-doping level increases. The existence of an exchange bias interaction was observed, thus validating the core-shell model proposed.

2.
Orig Life Evol Biosph ; 53(3-4): 127-156, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37676558

RESUMO

Thiocyanate may have played as important a role as cyanide in the synthesis of several molecules. However, its concentration in the seas of the prebiotic Earth could have been very low. Thiocyanate was dissolved in two different seawaters: a) a composition that comes close to the seawater of the prebiotic Earth (seawater-B, Ca2+ and Cl-) and b) a seawater (seawater-A, Mg2+ and SO42-) that could be related to the seas of Mars and other moons in the solar system. In addition, forsterite-91 was a very common mineral on the prebiotic Earth and Mars. Two important results are reported in this work: 1) thiocyanate adsorbed onto forsterite-91 and 2) the amount of thiocyanate adsorbed, adsorption thermodynamic, and adsorption kinetic depend on the composition of the artificial seawater. For all experiments, the adsorption was thermodynamically favorable (ΔG < 0). The adsorption data fitted well in the Freundlich and Langmuir-Freundlich models. When dissolving thiocyanate in seawater 4.0-A-Gy and seawater 4.0-B-Gy, the adsorption of thiocyanate onto forsterite-91 was ruled by enthalpy and entropy, respectively. As shown by n values, the thiocyanate/foraterite-91 system is heterogeneous. For all kinetic data, the pseudo-first-order model presented the best fit. The constant rate for thiocyanate dissolved in seawater 4.0-A-Gy was twice that compared to thiocyanate dissolved in seawater 4.0-B-Gy or ultrapure-water. The interaction between thiocyanate and Fe2+ of forsterite-91 was with the nitrogen atom of thiocyanate. In the presence of thiocyanate, sulfate interacts with forsterite-91 as an inner-sphere surface complex, and without thiocyanate as an outer-sphere surface complex.


Assuntos
Sais , Tiocianatos , Adsorção , Prebióticos , Minerais , Água do Mar , Cinética
4.
Astrobiology ; 21(9): 1121-1136, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34534004

RESUMO

Considered one of the most promising building blocks of life on primitive Earth, cyanide and its complexes are likely to have played an important role in the emergence of life on the planet. Investigation into cyanide on Earth has primarily considered high concentrations, but the cyanide concentration in the oceans of prebiotic Earth was exceptionally low. Thus, Bernal's hypothesis has allowed investigators to work around this problem. We observed, however, that cyanide does not adsorb onto several minerals; therefore, ferrocyanide could be used as a cyanide source when adsorbed onto mineral surfaces to promote the synthesis of molecules of biological significance. When adsorbed onto bentonite, a mineral that has Fe3+ atoms in its interlayers, the formation of Prussian blue analog complexes occurs through endothermic reaction and with increased entropy. The adsorption of ferrocyanide onto kaolinite indicates an exothermic and outer-sphere interaction, which results in degeneracy breakdown for C ≡ N stretch energy into two new bands of FTIR-ATR spectrum. Magnetite, which has iron atoms in its structure, and ferrocyanide interactions have been observed by outer-sphere coordination as well as the formation of Prussian blue analogs, as confirmed by the appearance of a new doublet in the Mössbauer spectra and a broadband close to 750 nm at UV-visible spectroscopy. Magnetite and kaolinite experiments presented relevant results only when performed in seawater, which suggests the importance of seawater composition for prebiotic experiments. These obtained results prove that ferrocyanide interacts with minerals differently according to structure and composition and show that this complex, like the Prussian blue analogs, may have played a crucial role as a source of cyanide on primitive Earth.


Assuntos
Ferrocianetos , Adsorção , Planeta Terra , Minerais
5.
Life (Basel) ; 10(4)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252332

RESUMO

Magnetite is an iron oxide mineral component of primitive Earth. It is naturally synthesized in different ways, such as magma cooling as well as olivine decomposition under hydrothermal conditions. It is probable magnetite played a significant role in biogenesis. The seawater used in the current work contained high Mg2+, Ca2+ and SO42- concentrations, unlike the seawater of today that has high Na+ and Cl- concentrations. It is likely that this seawater better resembled the ion composition of the seas of the Earth from 4 billion years ago. Cyanide and thiocyanate were common molecules in prebiotic Earth, and especially in primitive oceans, where they could act on the magnetite mechanism synthesis via Fe2+ interaction. In this research, magnetite samples that were synthesized under prebiotic conditions in the presence of cyanide or thiocyanate, (both with and without artificial seawater), showed that, besides magnetite, goethite and ferrihydrite can be produced through different Fe2+-ion interactions. Cyanide apparently acts as a protective agent for magnetite production; however, thiocyanate and seawater 4.0 Gy ions produced goethite and ferrihydrite at different ratios. These results validate that Fe3+ oxides/hydroxides were possibly present in primitive Earth, even under anoxic conditions or in the absence of UV radiation. In addition, the results show that the composition of water in early oceans should not be neglected in prebiotic chemistry experiments, since this composition directly influences mineral formation.

6.
Heliyon ; 6(3): e03532, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32181399

RESUMO

Glyphosate (N- (phosphonomethyl) glycine) is one of the most widely used herbicides in the world. In the literature, there are several studies describing the interaction between glyphosate and clay minerals. However, there is a lack of data of this interaction in marine environments. In this research, we examined the adsorption of glyphosate onto montmorillonite in the presence of artificial seawater. Mössbauer data showed that the interaction of the phosphonate group of glyphosate with Fe2+ of montmorillonite prevents its oxidation to Fe3+. X-ray diffractograms showed that glyphosate adsorption takes place only onto the montmorillonite surface and not in its interlayers. Infrared spectroscopy data demonstrate that the interaction between glyphosate and montmorillonite could be through the amino group. FT-IR spectra of aqueous solutions of salts of seawater showed that Ca2+ interacts with glyphosate of the phosphonate group, thus causing an increase in its adsorption onto montmorillonite. However, glyphosate dissolved in 0.50 mol L-1 NaCl and 0.034 mol L-1MgCl2 solutions showed the lowest adsorption onto montmorillonite. In addition, the adsorption of glyphosate onto montmorillonite decreased when the NaCl concentration increased. The results fitted the Sips isotherm model, probably because the Ca2+ interacts with glyphosate, making the adsorption process more homogeneous. Thus, n values for Freundlich and Sips isotherm models decreased with an increase in ionic strength. Glyphosate and ions of artificial seawater increased the pHpzc of montmorillonite.

7.
Materials (Basel) ; 13(4)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32075143

RESUMO

Monophasic Zn1-xFexO nanoparticles with wurtzite structure were synthesized in the 0 ≤ x ≤ 0.05 concentration range using a freeze-drying process followed by heat treatment. The samples were characterized regarding their optical, structural, and magnetic properties. The analyses revealed that iron doping of the ZnO matrix induces morphological changes in the crystallites. Iron is substitutional for zinc, trivalent and distributed in the wurtzite lattice in two groups: isolated iron atoms and iron atoms with one or more neighboring iron atoms. It was also shown that the energy band gap decreases with a higher doping level. The samples are paramagnetic at room temperature, but they undergo a spin-glass transition when the temperature drops below 75 K. The magnetic frustration is attributed to the competition of magnetic interactions among the iron moments. There are a superexchange interaction and an indirect exchange interaction that is provided by the spin (and charge) itinerant carriers in a spin-polarized band situated in the vicinity of the Fermi level of the Fe-doped ZnO semiconductor. The former interaction actuates for an antiferromagnetic coupling among iron ions, whereas the latter constitutes a driving force for a ferromagnetic coupling that weakens, decreasing the temperature. Our results strongly contribute to the literature because they elucidate the controversies reported in the literature for the magnetic state of the Fe-doped ZnO system.

8.
Inorg Chem ; 57(23): 14603-14616, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30418750

RESUMO

The iron(II) complexes of two structural isomers of 2-(1 H-imidazol-2-yl)diazine reveal how ligand design can be a successful strategy to control the electronic and magnetic properties of complexes by fine-tuning their ligand field. The two isomers only differ in the position of a single diazinic nitrogen atom, having either a pyrazine (Z) or a pyrimidine (M) moiety. However, [Fe(M)3](ClO4)2 is a spin-crossover complex with a spin transition at 241 K, whereas [Fe(Z)3](ClO4)2 has a stable magnetic behavior between 2 and 300 K. This is corroborated by temperature-dependent Mössbauer spectra showing the presence of a quintet and a singlet state in equilibrium. The temperature-dependent single-crystal X-ray diffraction results relate the spin-crossover observed in [Fe(M)3](ClO4)2 to changes in the bond distances and angles of the coordination sphere of iron(II), hinting at a stronger σ donation of ligand Z in comparison to ligand M. The UV/vis spectra of both complexes are solved by means of the multiconfigurational wave-function-based method CASPT2 and confirm their different spin multiplicities at room temperature, as observed in the Mössbauer spectra. Calculations show larger stabilization of the singlet state in [Fe(Z)3]2+ than in [Fe(M)3]2+, stemming from the slightly stronger ligand field of the former (506 cm-1 in the singlet). This relatively weak effect is indeed capable of changing the spin multiplicity of the complexes and causes the appearance of the spin transition in the M complex.

9.
Orig Life Evol Biosph ; 41(5): 453-68, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21717172

RESUMO

In the present work the interactions of nucleic acid bases with and adsorption on clays were studied at two pHs (2.00, 7.00) using different techniques. As shown by Mössbauer and EPR spectroscopies and X-ray diffractometry, the most important finding of this work is that nucleic acid bases penetrate into the interlayer of the clays and oxidize Fe(2+) to Fe(3+), thus, this interaction cannot be regarded as a simple physical adsorption. For the two pHs the order of the adsorption of nucleic acid bases on the clays was: adenine ≈ cytosine > thymine > uracil. The adsorption of adenine and cytosine on clays increased with decreasing of the pH. For unaltered montmorillonite this result could be explained by electrostatic forces between adenine/cytosine positively charged and clay negatively charged. However for montmorillonite modified with Na(2)S, probably van der Waals forces also play an important role since both adenine/cytosine and clay were positively charged. FT-IR spectra showed that the interaction between nucleic acid bases and clays was through NH(+) or NH (2) (+) groups. X-ray diffractograms showed that nucleic acid bases adsorbed on clays were distributed into the interlayer surface, edge sites and external surface functional groups (aluminol, silanol) EPR spectra showed that the intensity of the line g ≈ 2 increased probably because the oxidation of Fe(2+) to Fe(3+) by nucleic acid bases and intensity of the line g = 4.1 increased due to the interaction of Fe(3+) with nucleic acid bases. Mössbauer spectra showed a large decreased on the Fe(2+) doublet area of the clays due to the reaction of nucleic acid bases with Fe(2+).


Assuntos
Adenina/química , Bentonita/química , Citosina/química , Timina/química , Uracila/química , Adsorção , Planeta Terra , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio , Cinética , Compostos de Manganês , Oxirredução , Óxidos , Espectroscopia de Infravermelho com Transformada de Fourier , Sulfetos/química , Difração de Raios X
10.
Amino Acids ; 40(1): 205-14, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20524137

RESUMO

In the present paper, the adsorption of cysteine on hematite, magnetite and ferrihydrite was studied using FT-IR, electron paramagnetic resonance (EPR), Mössbauer spectroscopy and X-ray diffractometry. Cysteine was dissolved in artificial seawater (two different pHs) which contains the major constituents. There were two main findings described in this paper. First, after the cysteine adsorption, the FT-IR spectroscopy and X-ray diffractometry data showed the formation of cystine. Second, the Mössbauer spectroscopy did not show any increase in the amount of Fe(2+) as expected due the oxidation of cysteine to cystine. An explanation could be that Fe(2+) was oxidized by the oxygen present in the seawater or there occurred a reduction of cystine by Fe(2+) generating cysteine and Fe(3+). The specific surface area and pH at point of zero charge of the iron oxides were influenced by adsorption of cysteine. When compared to other iron oxides, ferrihydrite adsorbed significantly (p < 0.05) more cysteine. The pH has a significant (p < 0.05) effect only on cysteine adsorption on hematite. The FT-IR spectroscopy results showed that cystine remains adsorbed on the surface of the iron oxides even after being mixed with KCl and the amine and carboxylic groups are involved in this interaction. X-ray diffractometry showed no changes on iron oxides mineralogy and the following precipitated substances were found along with the iron oxides after drying the samples: cysteine, cystine and seawater salts. The EPR spectroscopy showed that cysteine interacts with iron oxides, changing the relative amounts of iron oxides and hydroxide.


Assuntos
Cisteína/química , Compostos Férricos/química , Óxido Ferroso-Férrico/química , Adsorção , Espectroscopia de Ressonância de Spin Eletrônica , Oxirredução , Espectroscopia de Mossbauer , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA