Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Inform ; 43(2): e202300206, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38095132

RESUMO

Fungal infections caused by Candida are still a public health concern. Particularly, the resistance to traditional chemotherapeutic agents is a major issue that requires efforts to develop new therapies. One of the most interesting approaches to finding new active compounds is drug repurposing aided by computational methods. In this work, two databases containing anticandidal agents and drugs were studied employing cheminformatics and compared by similarity methods. The results showed 36 drugs with high similarities to some candicidals. From these drugs, trimetozin, osalmid and metochalcone were evaluated against C. albicans (18804), C. glabrata (90030), and miconazole-resistant strain C. glabrata (32554). Osalmid and metochalcone were the best, with activity in the micromolar range. These findings represent an opportunity to continue with the research on the potential antifungal application of osalmid and metochalcone as well as the design of structurally related derivatives.


Assuntos
Chalconas , Reposicionamento de Medicamentos , Antifúngicos/farmacologia , Candida , Chalconas/farmacologia , Candida albicans
2.
Int J Mol Sci ; 24(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37628991

RESUMO

Type 2 diabetes (T2D) is one of the most common diseases and the 8th leading cause of death worldwide. Individuals with T2D are at risk for several health complications that reduce their life expectancy and quality of life. Although several drugs for treating T2D are currently available, many of them have reported side effects ranging from mild to severe. In this work, we present the synthesis in a gram-scale as well as the in silico and in vitro activity of two semisynthetic glycyrrhetinic acid (GA) derivatives (namely FC-114 and FC-122) against Protein Tyrosine Phosphatase 1B (PTP1B) and α-glucosidase enzymes. Furthermore, the in vitro cytotoxicity assay on Human Foreskin fibroblast and the in vivo acute oral toxicity was also conducted. The anti-diabetic activity was determined in streptozotocin-induced diabetic rats after oral administration with FC-114 or FC-122. Results showed that both GA derivatives have potent PTP1B inhibitory activity being FC-122, a dual PTP1B/α-glucosidase inhibitor that could increase insulin sensitivity and reduce intestinal glucose absorption. Molecular docking, molecular dynamics, and enzymatic kinetics studies revealed the inhibition mechanism of FC-122 against α-glucosidase. Both GA derivatives were safe and showed better anti-diabetic activity in vivo than the reference drug acarbose. Moreover, FC-114 improves insulin levels while decreasing LDL and total cholesterol levels without decreasing HDL cholesterol.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ácido Glicirretínico , Humanos , Animais , Ratos , Diabetes Mellitus Experimental/tratamento farmacológico , Simulação de Acoplamento Molecular , Qualidade de Vida , alfa-Glucosidases , Ácido Glicirretínico/farmacologia
3.
ACS Omega ; 6(35): 22969-22981, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34514267

RESUMO

An extract from a PDB static culture of Malbranchea dendritica exhibited α-glucosidase and PTP-1B inhibitory activities. Fractionation of the active extract led to the isolation of gymnoascolide A (1), a γ-butenolide, and xanthones sydowinin A (2), sydowinin B (3), and AGI-B4 (4), as well as orcinol (5). Compound 1 exhibited important inhibitory activity against yeast α-glucosidase (IC50 = 0.556 ± 0.009 mM) in comparison to acarbose (IC50 = 0.403 ± 0.010 mM). Kinetic analysis revealed that 1 is a mixed-type inhibitor. Furthermore, compound 1 significantly reduced the postprandial peak in mice during a sucrose tolerance test at the doses of 5.16 and 10 mg/kg. Compound 1 was reduced with Pd/C to yield a mixture of enantiomers 1a and 1b; the mixture showed similar activity against α-glucosidase (IC50 = 0.396 ± 0.003 mM) and kinetic behavior as the parent compound but might possess better drug-likeness properties according to SwissADME and Osiris Property Explorer tools. Docking analysis with yeast α-glucosidase (pdb: 3A4A) and the C-terminal subunit of human maltase-glucoamylase (pdb: 3TOP) predicted that 1, 1a, and 1b bind to an allosteric site of the enzymes. Compounds 1-5 were evaluated against PTP-1B, but only xanthone 3 moderately inhibited in a noncompetitive fashion the enzyme with an IC50 of 0.081 ± 0.004 mM. This result was consistent with that of docking analysis, which revealed that 3 might bind to an allosteric site of the enzyme. From the inactive barley-based semisolid culture of M. dendritica, the natural pigment erythroglaucin (6) and the nucleosides deoxyadenosine (7), adenosine (8), thymidine (9), and uridine (10) were also isolated and identified.

4.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34451912

RESUMO

Cancer is the second leading cause of death, after cardiovascular diseases. Different strategies have been developed to treat cancer; however, chemotherapy with cytotoxic agents is still the most widely used treatment approach. Nevertheless, drug resistance to available chemotherapeutic agents is still a serious problem, and the development of new active compounds remains a constant need. Taking advantage of the molecular hybridization approach, in the present work we designed, synthesized, and tested the cytotoxic activity of two hybrid compounds and seven derivatives based on the structure of combretastatin A-4 and 2,3-diphenyl-2H-indazole. Practical modifications of reported synthetic protocols for 2-pheny-2H-indazole and 2,3-dipheny-2H-indazole derivatives under microwave irradiation were implemented. The cytotoxicity assays showed that our designed hybrid compounds possess strong activity, especially compound 5, which resulted even better than the reference drug cisplatin against HeLa and SK-LU-1 cells (IC50 of 0.16 and 6.63 µM, respectively), and it had similar potency to the reference drug imatinib against K562 cells. Additionally, in silico and in vitro studies strongly suggest tubulin as the molecular target for hybrid compound 5.

5.
Molecules ; 26(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34299651

RESUMO

Regulating insulin and leptin levels using a protein tyrosine phosphatase 1B (PTP1B) inhibitor is an attractive strategy to treat diabetes and obesity. Glycyrrhetinic acid (GA), a triterpenoid, may weakly inhibit this enzyme. Nonetheless, semisynthetic derivatives of GA have not been developed as PTP1B inhibitors to date. Herein we describe the synthesis and evaluation of two series of indole- and N-phenylpyrazole-GA derivatives (4a-f and 5a-f). We measured their inhibitory activity and enzyme kinetics against PTP1B using p-nitrophenylphosphate (pNPP) assay. GA derivatives bearing substituted indoles or N-phenylpyrazoles fused to their A-ring showed a 50% inhibitory concentration for PTP1B in a range from 2.5 to 10.1 µM. The trifluoromethyl derivative of indole-GA (4f) exhibited non-competitive inhibition of PTP1B as well as higher potency (IC50 = 2.5 µM) than that of positive controls ursolic acid (IC50 = 5.6 µM), claramine (IC50 = 13.7 µM) and suramin (IC50 = 4.1 µM). Finally, docking and molecular dynamics simulations provided the theoretical basis for the favorable activity of the designed compounds.


Assuntos
Inibidores Enzimáticos , Ácido Glicirretínico , Indóis , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Pirazóis , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/síntese química , Ácido Glicirretínico/química , Humanos , Indóis/síntese química , Indóis/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Pirazóis/síntese química , Pirazóis/química , Relação Estrutura-Atividade
6.
Molecules ; 26(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203927

RESUMO

Artemisia ludoviciana subsp. mexicana has been traditionally used for the treatment of digestive ailments such as gastritis, whose main etiological agent is Helicobacter pylori. In a previous screening study, the aqueous extract exhibited a good in vitro anti-H. pylori activity. With the aim of determining the efficacy of this species as a treatment for H. pylori related diseases and finding bioactive compounds, its aqueous extract was subjected to solvent partitioning and the fractions obtained were tested for their in vitro anti-H. pylori effect, as well as for their in vivo gastroprotective and anti-inflammatory activities. The aqueous extract showed a MIC = 250 µg/mL. No acute toxicity was induced in mice. A gastroprotection of 69.8 ± 3.8%, as well as anti-inflammatory effects of 47.6 ± 12.4% and 38.8 ± 10.2% (by oral and topical administration, respectively), were attained. Estafiatin and eupatilin were isolated and exhibited anti-H. pylori activity with MBCs of 15.6 and 31.2 µg/mL, respectively. The finding that A. ludoviciana aqueous extract has significant anti-H. pylori, gastroprotective and anti-inflammatory activities is a relevant contribution to the ethnopharmacological knowledge of this species. This work is the first report about the in vivo gastroprotective activity of A. ludoviciana and the anti-H. pylori activity of eupatilin and estafiatin.


Assuntos
Artemisia/metabolismo , Flavonoides/farmacologia , Helicobacter pylori/efeitos dos fármacos , Animais , Antiulcerosos/farmacologia , Flavonoides/metabolismo , Gastrite/tratamento farmacológico , Masculino , Medicina Tradicional , Camundongos , Camundongos Endogâmicos , Extratos Vegetais/farmacologia , Sesquiterpenos/metabolismo , Sesquiterpenos/farmacologia , Úlcera Gástrica/tratamento farmacológico
7.
Molecules ; 26(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917871

RESUMO

Indazole is an important scaffold in medicinal chemistry. At present, the progress on synthetic methodologies has allowed the preparation of several new indazole derivatives with interesting pharmacological properties. Particularly, the antiprotozoal activity of indazole derivatives have been recently reported. Herein, a series of 22 indazole derivatives was synthesized and studied as antiprotozoals. The 2-phenyl-2H-indazole scaffold was accessed by a one-pot procedure, which includes a combination of ultrasound synthesis under neat conditions as well as Cadogan's cyclization. Moreover, some compounds were derivatized to have an appropriate set to provide structure-activity relationships (SAR) information. Whereas the antiprotozoal activity of six of these compounds against E. histolytica, G. intestinalis, and T. vaginalis had been previously reported, the activity of the additional 16 compounds was evaluated against these same protozoa. The biological assays revealed structural features that favor the antiprotozoal activity against the three protozoans tested, e.g., electron withdrawing groups at the 2-phenyl ring. It is important to mention that the indazole derivatives possess strong antiprotozoal activity and are also characterized by a continuous SAR.


Assuntos
Antiprotozoários/síntese química , Antiprotozoários/farmacologia , Quimioinformática , Indazóis/síntese química , Indazóis/farmacologia , Antiprotozoários/química , Entamoeba histolytica/efeitos dos fármacos , Giardia lamblia/efeitos dos fármacos , Indazóis/química , Concentração Inibidora 50 , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Trichomonas vaginalis/efeitos dos fármacos , Ultrassom
8.
Pharmaceuticals (Basel) ; 14(3)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668364

RESUMO

Candidiasis, caused by yeasts of the genus Candida, is the second cause of superficial and mucosal infections and the fourth cause of bloodstream infections. Although some antifungal drugs to treat candidiasis are available, resistant strains to current therapies are emerging. Therefore, the search for new candicidal compounds is certainly a priority. In this regard, a series of indazole and pyrazole derivatives were designed in this work, employing bioisosteric replacement, homologation, and molecular simplification as new anticandidal agents. Compounds were synthesized and evaluated against C. albicans, C. glabrata, and C. tropicalis strains. The series of 3-phenyl-1H-indazole moiety (10a-i) demonstrated to have the best broad anticandidal activity. Particularly, compound 10g, with N,N-diethylcarboxamide substituent, was the most active against C. albicans and both miconazole susceptible and resistant C. glabrata species. Therefore, the 3-phenyl-1H-indazole scaffold represents an opportunity for the development of new anticandidal agents with a new chemotype.

9.
Molecules ; 22(11)2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-29088121

RESUMO

Indazole is considered a very important scaffold in medicinal chemistry. It is commonly found in compounds with diverse biological activities, e.g., antimicrobial and anti-inflammatory agents. Considering that infectious diseases are associated to an inflammatory response, we designed a set of 2H-indazole derivatives by hybridization of cyclic systems commonly found in antimicrobial and anti-inflammatory compounds. The derivatives were synthesized and tested against selected intestinal and vaginal pathogens, including the protozoa Giardia intestinalis, Entamoeba histolytica, and Trichomonas vaginalis; the bacteria Escherichia coli and Salmonella enterica serovar Typhi; and the yeasts Candida albicans and Candida glabrata. Biological evaluations revealed that synthesized compounds have antiprotozoal activity and, in most cases, are more potent than the reference drug metronidazole, e.g., compound 18 is 12.8 times more active than metronidazole against G. intestinalis. Furthermore, two 2,3-diphenyl-2H-indazole derivatives (18 and 23) showed in vitro growth inhibition against Candida albicans and Candida glabrata. In addition to their antimicrobial activity, the anti-inflammatory potential for selected compounds was evaluated in silico and in vitro against human cyclooxygenase-2 (COX-2). The results showed that compounds 18, 21, 23, and 26 display in vitro inhibitory activity against COX-2, whereas docking calculations suggest a similar binding mode as compared to rofecoxib, the crystallographic reference.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Indazóis/química , Anti-Infecciosos/síntese química , Anti-Inflamatórios não Esteroides/síntese química , Antiprotozoários/síntese química , Antiprotozoários/química , Antiprotozoários/farmacologia , Técnicas de Química Sintética , Simulação por Computador , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Entamoeba histolytica/efeitos dos fármacos , Giardia lamblia/efeitos dos fármacos , Células HeLa , Humanos , Indazóis/síntese química , Simulação de Acoplamento Molecular , Trichomonas vaginalis/efeitos dos fármacos
10.
Molecules ; 22(4)2017 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-28420097

RESUMO

Curcumin (1) and ten derivatives (2-11) were synthesized and evaluated as cytotoxic and antioxidant agents. The results of primary screening by Sulforhodamine B assay against five human cancer cell lines (U-251 MG, glioblastoma; PC-3, human prostatic; HCT-15, human colorectal; K562, human chronic myelogenous leukemia; and SKLU-1, non-small cell lung cancer) allowed us to calculate the half maximal inhibitory concentration (IC50) values for the more active compounds against HCT-15 and K562 cell lines. Compounds 2 and 10 were the most active against both cell lines and were more active than curcumin itself. Thiobarbituric acid reactive substances (TBARS) assay showed that 7 has potent activity; even stronger than curcumin, α-tocopherol, and quercetin.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Antioxidantes/síntese química , Antioxidantes/farmacologia , Curcumina/síntese química , Curcumina/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Curcumina/análogos & derivados , Sequestradores de Radicais Livres/síntese química , Sequestradores de Radicais Livres/farmacologia , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA