Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLOS Glob Public Health ; 4(8): e0002224, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39093879

RESUMO

Species distribution models (SDMs) are increasingly popular tools for profiling disease risk in ecology, particularly for infectious diseases of public health importance that include an obligate non-human host in their transmission cycle. SDMs can create high-resolution maps of host distribution across geographical scales, reflecting baseline risk of disease. However, as SDM computational methods have rapidly expanded, there are many outstanding methodological questions. Here we address key questions about SDM application, using schistosomiasis risk in Brazil as a case study. Schistosomiasis is transmitted to humans through contact with the free-living infectious stage of Schistosoma spp. parasites released from freshwater snails, the parasite's obligate intermediate hosts. In this study, we compared snail SDM performance across machine learning (ML) approaches (MaxEnt, Random Forest, and Boosted Regression Trees), geographic extents (national, regional, and state), types of presence data (expert-collected and publicly-available), and snail species (Biomphalaria glabrata, B. straminea, and B. tenagophila). We used high-resolution (1km) climate, hydrology, land-use/land-cover (LULC), and soil property data to describe the snails' ecological niche and evaluated models on multiple criteria. Although all ML approaches produced comparable spatially cross-validated performance metrics, their suitability maps showed major qualitative differences that required validation based on local expert knowledge. Additionally, our findings revealed varying importance of LULC and bioclimatic variables for different snail species at different spatial scales. Finally, we found that models using publicly-available data predicted snail distribution with comparable AUC values to models using expert-collected data. This work serves as an instructional guide to SDM methods that can be applied to a range of vector-borne and zoonotic diseases. In addition, it advances our understanding of the relevant environment and bioclimatic determinants of schistosomiasis risk in Brazil.

2.
Nat Commun ; 15(1): 4838, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898012

RESUMO

Schistosomiasis is a neglected tropical disease caused by Schistosoma parasites. Schistosoma are obligate parasites of freshwater Biomphalaria and Bulinus snails, thus controlling snail populations is critical to reducing transmission risk. As snails are sensitive to environmental conditions, we expect their distribution is significantly impacted by global change. Here, we used machine learning, remote sensing, and 30 years of snail occurrence records to map the historical and current distribution of forward-transmitting Biomphalaria hosts throughout Brazil. We identified key features influencing the distribution of suitable habitat and determined how Biomphalaria habitat has changed with climate and urbanization over the last three decades. Our models show that climate change has driven broad shifts in snail host range, whereas expansion of urban and peri-urban areas has driven localized increases in habitat suitability. Elucidating change in Biomphalaria distribution-while accounting for non-linearities that are difficult to detect from local case studies-can help inform schistosomiasis control strategies.


Assuntos
Biomphalaria , Mudança Climática , Ecossistema , Schistosoma mansoni , Esquistossomose mansoni , Urbanização , Animais , Brasil , Schistosoma mansoni/fisiologia , Biomphalaria/parasitologia , Esquistossomose mansoni/transmissão , Esquistossomose mansoni/epidemiologia , Esquistossomose mansoni/parasitologia , Caramujos/parasitologia , Caramujos/fisiologia , Humanos
3.
bioRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38260310

RESUMO

Schistosomiasis is a neglected tropical disease caused by Schistosoma parasites. Schistosoma are obligate parasites of freshwater Biomphalaria snails, so controlling snail populations is critical to reducing transmission risk. As snails are sensitive to environmental conditions, we expect their distribution is significantly impacted by global change. Here, we leveraged machine learning, remote sensing, and 30 years of snail occurrence records to map the historical and current distribution of competent Biomphalaria throughout Brazil. We identified key features influencing the distribution of suitable habitat and determined how Biomphalaria habitat has changed with climate and urbanization over the last three decades. Our models show that climate change has driven broad shifts in snail host range, whereas expansion of urban and peri-urban areas has driven localized increases in habitat suitability. Elucidating change in Biomphalaria distribution - while accounting for non-linearities that are difficult to detect from local case studies - can help inform schistosomiasis control strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA