Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mar Environ Res ; 200: 106646, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39048495

RESUMO

Rocky shore communities are shaped by complex interactions among environmental drivers and a range of biological processes. Here, we investigated the importance of abiotic and biotic drivers on the population structure of key rocky intertidal species at 62 sites, spanning ∼50% of the Brazilian rocky shoreline (i.e., ∼500 km). Large-scale population patterns were generally explained by differences in ocean temperature and wave exposure. For the gastropod species Lottia subrugosa, differences at smaller scales (i.e., 0.1-1 km) were better explained by other abiotic influences such as freshwater discharge and substrate roughness. Based on the general population patterns of intertidal species identified, three main oceanographic groups were observed: a cold-oligotrophic grouping at northern sites (Lakes sub-region), a eutrophic group associated with large estuaries and urban zones (Santos and Guanabara bays); and a transitional warm-water group found between the two more productive areas. Larger individuals of Stramonita brasiliensis, L. subrugosa and Echinolittorina lineolata were generally found in the cold-oligotrophic system (i.e., upwelling region), while small suspension feeders dominate the warm-eutrophic systems. Evidence of bottom-up regulation was not observed, and top-down regulation effects were only observed between the whelk S. brasiliensis and its mussel prey Pernaperna. Environmental drivers as compared to biotic interactions, therefore, play a key role determining the population structure of multiple intertidal species, across a range of spatial scales along the SW Atlantic shores.


Assuntos
Ecossistema , Brasil , Animais , Monitoramento Ambiental , Gastrópodes/fisiologia , Dinâmica Populacional , Biodiversidade , Temperatura
2.
Oecologia ; 199(3): 685-698, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35857114

RESUMO

Predator-prey interactions are a key ecological process which can be modified by environmental conditions over a range of spatial scales. Through two complementary short-term experiments, we assessed how local and large-scale environmental conditions affect a subtropical intertidal predator-prey interaction. At a local scale, we evaluated the effects of the degree of exposure to wave action and prey density on consumption rate and interaction strength using a whelk-barnacle system. Consumption rate decreased with wave exposure at experimentally reduced prey density but did not change at ambient density. Such an interactive effect occurred due to shifts in the whelk's feeding behaviour, likely linked to encounter rate and stress amelioration underpinned by prey density. Per capita interaction strength of the whelk on the barnacle weakened along the wave exposure gradient, but to a greater degree at reduced compared to ambient prey density. This confirms that environmental harshness can decrease the importance of predators, but the magnitude of change may be modified by density-dependent effects. A large-scale experiment did not reveal spatial patterns in the whelk-barnacle interaction, nor relationships to chlorophyll-a concentration or the minor change in sea temperature across the study area. Patterns in the size of consumed barnacles along the chlorophyll-a gradient suggest changes in food choice related to prey quality and size. We conclude that disentangling the effects of wave exposure and prey density revealed important potential mechanisms driving species locally. Large-scale variation in the whelk-barnacle interaction appeared to be linked to species' traits shaped by the environmental context.


Assuntos
Comportamento Predatório , Thoracica , Animais , Clorofila , Cadeia Alimentar
5.
Sci Total Environ ; 803: 150097, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34500263

RESUMO

Pollution is a major worldwide problem that is increasing with urban growth, mainly along coastal areas. Pollution is often worse, governance is poorer and managerial strategies to improve environmental quality are less advanced in developing than developed countries. Here, we present an overview of the current scientific knowledge of the impacts of contamination on the biota of coastal ecosystems of Brazil and evaluate the scientific challenges to provide baseline information for local managerial purposes. We compiled data from 323 peer-reviewed published papers from the extensive Brazilian coast. We critically evaluated the produced knowledge (target contaminants, sources, ecosystems, taxa, response variables) and the science behind it (rigour and setting) within its socioenvironmental context (land occupation, use of the coast, sanitation status, contamination history). Research was driven largely by environmental outcomes of industrial development with a focus on the single effects of metals on the biota. The current knowledge derives mainly from laboratory manipulative experiments or from correlative field studies of changes in the biota with varying levels of contamination. Of these, 70% had problems in their experimental design. Environmental impacts have mainly been assessed using standard indicators of populations, mostly in ecotoxicological studies. Benthic assemblages have mostly been studied using structural indicators in field studies. Future assessments of impacts should expand research to more taxonomic groups and ecosystem compartments, adding combined functional and structural responses. Furthermore, further investigations need to consider the interactive effects of contaminants and other environmental stressors. By doing so, researchers would deliver more robust and effective results to solve problems of pollution.


Assuntos
Países em Desenvolvimento , Ecossistema , Biota , Brasil , Poluição Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA