Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(7): e28449, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38689961

RESUMO

Trametes villosa is a remarkable white-rot fungus (WRF) with the potential to be applied in lignocellulose conversion to obtain chemical compounds and biofuels. Lignocellulose breakdown by WRF is carried out through the secretion of oxidative and hydrolytic enzymes. Despite the existing knowledge about this process, the complete molecular mechanisms involved in the regulation of this metabolic system have not yet been elucidated. Therefore, in order to understand the genes and metabolic pathways regulated during lignocellulose degradation, the strain T. villosa CCMB561 was cultured in media with different carbon sources (lignin, sugarcane bagasse, and malt extract). Subsequently, biochemical assays and differential gene expression analysis by qPCR and high-throughput RNA sequencing were carried out. Our results revealed the ability of T. villosa CCMB561 to grow on lignin (AL medium) as the unique carbon source. An overexpression of Cytochrome P450 was detected in this medium, which may be associated with the lignin O-demethylation pathway. Clusters of up-regulated CAZymes-encoding genes were identified in lignin and sugarcane bagasse, revealing that T. villosa CCMB561 acts simultaneously in the depolymerization of lignin, cellulose, hemicellulose, and pectin. Furthermore, genes encoding nitroreductases and homogentisate-1,2-dioxygenase that act in the degradation of organic pollutants were up-regulated in the lignin medium. Altogether, these findings provide new insights into the mechanisms of lignocellulose degradation by T. villosa and confirm the ability of this fungal species to be applied in biorefineries and in the bioremediation of organic pollutants.

2.
Gene ; 795: 145781, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34153410

RESUMO

The Bifidobacterium longum 51A strain of isolated from feces of a healthy child, has demonstrated probiotic properties by in vivo and in vitro studies, which may be assigned to its production of metabolites such as acetate. Thus, through the study of comparative genomics, the present work sought to identify unique genes that might be related to the production of acetate. To perform the study, the DNA strain was sequenced using Illumina HiSeq technology, followed by assembly and manual curation of coding sequences. Comparative analysis was performed including 19 complete B. longum genomes available in Genbank/NCBI. In the phylogenetic analysis, the CECT 7210 and 157F strains of B. longum subsp. infantis aggregated within the subsp. longum cluster, suggesting that their taxonomic classification should be reviewed. The strain 51A of B. longum has 26 unique genes, six of which are possibly related to carbohydrate metabolism and acetate production. The phosphoketolase pathway from B. longum 51A showed a difference in acetyl-phosphate production. This result seems to corroborate the analysis of their unique genes, whose presence suggests the strain may use different sources of carbohydrates that allow a greater production of acetate and consequently offer benefits to the host health.


Assuntos
Acetatos/metabolismo , Bifidobacterium longum/genética , Bifidobacterium longum/metabolismo , Metabolismo dos Carboidratos/genética , Genes Bacterianos , Probióticos/metabolismo , Sequência de Bases , Bifidobacterium longum/classificação , Criança , Simulação por Computador , Fezes/microbiologia , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Filogenia , Análise de Sequência de DNA
3.
Sci Data ; 7(1): 142, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393779

RESUMO

We present the newest version of CoryneRegNet, the reference database for corynebacterial regulatory interactions, available at www.exbio.wzw.tum.de/coryneregnet/. The exponential growth of next-generation sequencing data in recent years has allowed a better understanding of bacterial molecular mechanisms. Transcriptional regulation is one of the most important mechanisms for bacterial adaptation and survival. These mechanisms may be understood via an organism's network of regulatory interactions. Although the Corynebacterium genus is important in medical, veterinary and biotechnological research, little is known concerning the transcriptional regulation of these bacteria. Here, we unravel transcriptional regulatory networks (TRNs) for 224 corynebacterial strains by utilizing genome-scale transfer of TRNs from four model organisms and assigning statistical significance values to all predicted regulations. As a result, the number of corynebacterial strains with TRNs increased twenty times and the back-end and front-end were reimplemented to support new features as well as future database growth. CoryneRegNet 7 is the largest TRN database for the Corynebacterium genus and aids in elucidating transcriptional mechanisms enabling adaptation, survival and infection.


Assuntos
Corynebacterium/genética , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Bases de Dados Genéticas , Conjuntos de Dados como Assunto
4.
Sci Rep ; 9(1): 16387, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31705053

RESUMO

The number of draft genomes deposited in Genbank from the National Center for Biotechnology Information (NCBI) is higher than the complete ones. Draft genomes are assemblies that contain fragments of misassembled regions (gaps). Such draft genomes present a hindrance to the complete understanding of the biology and evolution of the organism since they lack genomic information. To overcome this problem, strategies to improve the assembly process are developed continuously. Also, the greatest challenge to the assembly progress is the presence of repetitive DNA regions. This article highlights the use of optical mapping, to detect and correct assembly errors in Corynebacterium pseudotuberculosis. We also demonstrate that choosing a reference genome should be done with caution to avoid assembly errors and loss of genetic information.


Assuntos
Mapeamento Cromossômico/métodos , Corynebacterium pseudotuberculosis/genética , Genoma Bacteriano , Inversão Cromossômica , Corynebacterium pseudotuberculosis/classificação , Bases de Dados de Ácidos Nucleicos , Sequenciamento de Nucleotídeos em Larga Escala , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Sequenciamento Completo do Genoma/métodos
5.
BMC Genomics ; 20(1): 663, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31429699

RESUMO

BACKGROUND: Iron is an essential micronutrient for the growth and development of virtually all living organisms, playing a pivotal role in the proliferative capability of many bacterial pathogens. The impact that the bioavailability of iron has on the transcriptional response of bacterial species in the CMNR group has been widely reported for some members of the group, but it hasn't yet been as deeply explored in Corynebacterium pseudotuberculosis. Here we describe for the first time a comprehensive RNA-seq whole transcriptome analysis of the T1 wild-type and the Cp13 mutant strains of C. pseudotuberculosis under iron restriction. The Cp13 mutant strain was generated by transposition mutagenesis of the ciuA gene, which encodes a surface siderophore-binding protein involved in the acquisition of iron. Iron-regulated acquisition systems are crucial for the pathogenesis of bacteria and are relevant targets to the design of new effective therapeutic approaches. RESULTS: Transcriptome analyses showed differential expression in 77 genes within the wild-type parental T1 strain and 59 genes in Cp13 mutant under iron restriction. Twenty-five of these genes had similar expression patterns in both strains, including up-regulated genes homologous to the hemin uptake hmu locus and two distinct operons encoding proteins structurally like hemin and Hb-binding surface proteins of C. diphtheriae, which were remarkably expressed at higher levels in the Cp13 mutant than in the T1 wild-type strain. These hemin transport protein genes were found to be located within genomic islands associated with known virulent factors. Down-regulated genes encoding iron and heme-containing components of the respiratory chain (including ctaCEF and qcrCAB genes) and up-regulated known iron/DtxR-regulated transcription factors, namely ripA and hrrA, were also identified differentially expressed in both strains under iron restriction. CONCLUSION: Based on our results, it can be deduced that the transcriptional response of C. pseudotuberculosis under iron restriction involves the control of intracellular utilization of iron and the up-regulation of hemin acquisition systems. These findings provide a comprehensive analysis of the transcriptional response of C. pseudotuberculosis, adding important understanding of the gene regulatory adaptation of this pathogen and revealing target genes that can aid the development of effective therapeutic strategies against this important pathogen.


Assuntos
Corynebacterium pseudotuberculosis/genética , Corynebacterium pseudotuberculosis/metabolismo , Perfilação da Expressão Gênica , Deficiências de Ferro , Corynebacterium pseudotuberculosis/crescimento & desenvolvimento , Corynebacterium pseudotuberculosis/fisiologia , Redes Reguladoras de Genes , Ilhas Genômicas/genética , Viabilidade Microbiana/genética , Mutação , Transcrição Gênica
6.
Stand Genomic Sci ; 13: 21, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30338024

RESUMO

Corynebacterium pseudotuberculosis is a pathogenic bacterium which has been rapidly spreading all over the world, causing economic losses in the agricultural sector and sporadically infecting humans. Six C. pseudotuberculosis strains were isolated from goats, sheep, and horses with distinct abscess locations. For the first time, Mexican genomes of this bacterium were sequenced and studied in silico. All strains were sequenced using Ion Personal Genome Machine sequencer, assembled using Newbler and SPAdes software. The automatic genome annotation was done using the software RAST and in-house scripts for transference, followed by manual curation using Artemis software and BLAST against NCBI and UniProt databases. The six genomes are publicly available in NCBI database. The analysis of nucleotide sequence similarity and the generated phylogenetic tree led to the observation that the Mexican strains are more similar between strains from the same host, but the genetic structure is probably more influenced by transportation of animals between farms than host preference. Also, a putative drug target was predicted and in silico analysis of 46 strains showed two gene clusters capable of differentiating the biovars equi and ovis: Restriction Modification system and CRISPR-Cas cluster.

7.
Genome Announc ; 3(4)2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26184935

RESUMO

We present here the complete genome sequence of Corynebacterium pseudotuberculosis strain 12C, isolated from a sheep abscess in the Brazil. The sequencing was performed with the Ion Torrent Personal Genome Machine (PGM) system, a fragment library, and a coverage of ~48-fold. The genome presented is a circular chromosome with 2,337,451 bp in length, 2,119 coding sequences, 12 rRNAs, 49 tRNAs, and a G+C content of 52.83%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA