Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0287893, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38324542

RESUMO

Wildlife trafficking creates favorable scenarios for intra- and inter-specific interactions that can lead to parasite spread and disease emergence. Among the fauna affected by this activity, primates are relevant due to their potential to acquire and share zoonoses - infections caused by parasites that can spread between humans and other animals. Though it is known that most primate parasites can affect multiple hosts and that many are zoonotic, comparative studies across different contexts for animal-human interactions are scarce. We conducted a multi-parasite screening targeting the detection of zoonotic infections in wild-caught monkeys in nine Peruvian cities across three contexts: captivity (zoos and rescue centers, n = 187); pet (households, n = 69); and trade (trafficked or recently confiscated, n = 132). We detected 32 parasite taxa including mycobacteria, simian foamyvirus, bacteria, helminths, and protozoa. Monkeys in the trade context had the highest prevalence of hemoparasites (including Plasmodium malariae/brasilianum, Trypanosoma cruzi, and microfilaria) and enteric helminths and protozoa were less common in pet monkeys. However, parasite communities showed overall low variation between the three contexts. Parasite richness (PR) was best explained by host genus and the city where the animal was sampled. Squirrel (genus Saimiri) and wooly (genus Lagothrix) monkeys had the highest PR, which was ~2.2 times the PR found in tufted capuchins (genus Sapajus) and tamarins (genus Saguinus/Leontocebus) in a multivariable model adjusted for context, sex, and age. Our findings illustrate that the threats of wildlife trafficking to One Health encompass exposure to multiple zoonotic parasites well-known to cause disease in humans, monkeys, and other species. We demonstrate these threats continue beyond the markets where wildlife is initially sold; monkeys trafficked for the pet market remain a reservoir for and contribute to the translocation of zoonotic parasites to households and other captive facilities where contact with humans is frequent. Our results have practical applications for the healthcare of rescued monkeys and call for urgent action against wildlife trafficking and ownership of monkeys as pets.


Assuntos
Helmintos , Parasitos , Plasmodium , Humanos , Animais , Peru/epidemiologia , Prevalência , Zoonoses/epidemiologia , Animais Selvagens/microbiologia , Haplorrinos , Saguinus
2.
Parasit Vectors ; 12(1): 584, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842984

RESUMO

BACKGROUND: Blood meal host selection by mosquito vectors is an important component in understanding disease dynamics of pathogens that threaten endemic fauna in isolated islands such as Galápagos. Research on the feeding behavior of mosquitoes can provide clues to the hosts and vectors involved in disease transmission. This information is particularly critical for endemic wildlife fauna in island systems that have evolved without resistance to novel diseases such as avian malaria. The aims of this study were to determine the blood-feeding patterns of two species of mosquitoes found in Galápagos and discuss how their feeding behavior may influence the transmission of pathogens such as avian malaria. METHODS: In the summer of 2015, we sampled two mosquito species (Aedes taeniorhynchus and Culex quinquefasciatus) across 18 different sites on Isla Santa Cruz, which is the second largest island in Galápagos and has the largest human population. We trapped mosquitoes using CDC light traps and CDC gravid traps and identified sources of blood meals for engorged mosquitoes by sequencing a portion of the vertebrate mitochondrial cytochrome b gene. RESULTS: Out of 947 female mosquitoes captured, 320 were blood-fed, and PCR amplifications were successful for 301 of the blood meals. Results revealed that both Aedes taeniorhynchus and Culex quinquefasciatus feed from a variety of vertebrate taxa, numerically dominated by humans on Isla Santa Cruz. CONCLUSIONS: The high proportion of mammalian blood meals could represent locally available and abundant hosts on Santa Cruz. However, host surveys and estimates of relative abundances of vertebrate species will need to accompany mosquito trapping studies on non-inhabited and inhabited islands in Galápagos to further validate this.


Assuntos
Aedes/fisiologia , Culex/fisiologia , Comportamento Alimentar , Mosquitos Vetores/fisiologia , Animais , Citocromos b/genética , Equador , Entomologia/métodos , Enzimas/sangue , Enzimas/genética , Técnicas de Genotipagem/métodos , Humanos , Mamíferos
3.
Am J Primatol ; 81(12): e23063, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31692027

RESUMO

The establishment of baseline data on parasites from wild primates is essential to understand how changes in habitat or climatic disturbances will impact parasite-host relationships. In nature, multiparasitic infections of primates usually fluctuate temporally and seasonally, implying that the acquisition of reliable data must occur over time. Individual parasite infection data from two wild populations of New World primates, the saddleback (Leontocebus weddelli) and emperor (Saguinus imperator) tamarin, were collected over 3 years to establish baseline levels of helminth prevalence and parasite species richness (PSR). Secondarily, we explored variation in parasite prevalence across age and sex classes, test nonrandom associations of parasite co-occurrence, and assess the relationship between group size and PSR. From 288 fecal samples across 105 individuals (71 saddleback and 34 emperor tamarins), 10 parasite taxa were identified by light microscopy following centrifugation and ethyl-acetate sedimentation. Of these taxa, none were host-specific, Dicrocoeliidae and Cestoda prevalences differed between host species, Prosthenorchis and Strongylida were the most prevalent. Host age was positively associated with Prosthenorchis ova and filariform larva, but negatively with cestode and the Rhabditoidea ova. We detected no differences between expected and observed levels of co-infection, nor between group size and parasite species richness over 30 group-years. Logistic models of individual infection status did not identify a sex bias; however, age and species predicted the presence of four and three parasite taxa, respectively, with saddleback tamarins exhibiting higher PSR. Now that we have reliable baseline data for future monitoring of these populations, next steps involve the molecular characterization of these parasites, and exploration of linkages with health parameters.


Assuntos
Biodiversidade , Callitrichinae , Helmintíase Animal/epidemiologia , Helmintos/isolamento & purificação , Doenças dos Macacos/epidemiologia , Saguinus , Animais , Feminino , Helmintíase Animal/parasitologia , Masculino , Doenças dos Macacos/parasitologia , Peru/epidemiologia , Prevalência
4.
BMC Genomics ; 19(1): 53, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29338715

RESUMO

BACKGROUND: Mitochondria play a key role in the balance of energy and heat production, and therefore the mitochondrial genome is under natural selection by environmental temperature and food availability, since starvation can generate more efficient coupling of energy production. However, selection over mitochondrial DNA (mtDNA) genes has usually been evaluated at the population level. We sequenced by NGS 12 mitogenomes and with four published genomes, assessed genetic variation in ten penguin species distributed from the equator to Antarctica. Signatures of selection of 13 mitochondrial protein-coding genes were evaluated by comparing among species within and among genera (Spheniscus, Pygoscelis, Eudyptula, Eudyptes and Aptenodytes). The genetic data were correlated with environmental data obtained through remote sensing (sea surface temperature [SST], chlorophyll levels [Chl] and a combination of SST and Chl [COM]) through the distribution of these species. RESULTS: We identified the complete mtDNA genomes of several penguin species, including ND6 and 8 tRNAs on the light strand and 12 protein coding genes, 14 tRNAs and two rRNAs positioned on the heavy strand. The highest diversity was found in NADH dehydrogenase genes and the lowest in COX genes. The lowest evolutionary divergence among species was between Humboldt (Spheniscus humboldti) and Galapagos (S. mendiculus) penguins (0.004), while the highest was observed between little penguin (Eudyptula minor) and Adélie penguin (Pygoscelis adeliae) (0.097). We identified a signature of purifying selection (Ka/Ks < 1) across the mitochondrial genome, which is consistent with the hypothesis that purifying selection is constraining mitogenome evolution to maintain Oxidative phosphorylation (OXPHOS) proteins and functionality. Pairwise species maximum-likelihood analyses of selection at codon sites suggest positive selection has occurred on ATP8 (Fixed-Effects Likelihood, FEL) and ND4 (Single Likelihood Ancestral Counting, SLAC) in all penguins. In contrast, COX1 had a signature of strong negative selection. ND4 Ka/Ks ratios were highly correlated with SST (Mantel, p-value: 0.0001; GLM, p-value: 0.00001) and thus may be related to climate adaptation throughout penguin speciation. CONCLUSIONS: These results identify mtDNA candidate genes under selection which could be involved in broad-scale adaptations of penguins to their environment. Such knowledge may be particularly useful for developing predictive models of how these species may respond to severe climatic changes in the future.


Assuntos
Evolução Molecular , Genoma Mitocondrial , Seleção Genética , Spheniscidae/genética , Animais , DNA Mitocondrial/química , Interação Gene-Ambiente , Genômica
5.
Mol Biol Evol ; 35(2): 383-403, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29126122

RESUMO

Haemosporidians are a diverse group of vector-borne parasitic protozoa that includes the agents of human malaria; however, most of the described species are found in birds and reptiles. Although our understanding of these parasites' diversity has expanded by analyses of their mitochondrial genes, there is limited information on these genes' evolutionary rates. Here, 114 mitochondrial genomes (mtDNA) were studied from species belonging to four genera: Leucocytozoon, Haemoproteus, Hepatocystis, and Plasmodium. Contrary to previous assertions, the mtDNA is phylogenetically informative. The inferred phylogeny showed that, like the genus Plasmodium, the Leucocytozoon and Haemoproteus genera are not monophyletic groups. Although sensitive to the assumptions of the molecular dating method used, the estimated times indicate that the diversification of the avian haemosporidian subgenera/genera took place after the Cretaceous-Paleogene boundary following the radiation of modern birds. Furthermore, parasite clade differences in mtDNA substitution rates and strength of negative selection were detected. These differences may affect the biological interpretation of mtDNA gene lineages used as a proxy to species in ecological and parasitological investigations. Given that the mitochondria are critically important in the parasite life cycle stages that take place in the vector and that the transmission of parasites belonging to particular clades has been linked to specific insect families/subfamilies, this study suggests that differences in vectors have affected the mode of evolution of haemosporidian mtDNA genes. The observed patterns also suggest that the radiation of haemosporidian parasites may be the result of community-level evolutionary processes between their vertebrate and invertebrate hosts.


Assuntos
Evolução Biológica , Genoma Mitocondrial , Genoma de Protozoário , Haemosporida/genética , Seleção Genética
6.
J Vector Ecol ; 42(2): 243-253, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29125252

RESUMO

An avian malaria parasite (genus Plasmodium) has been detected consistently in the Galapagos Penguin (Spheniscus mendiculus) and less frequently in some passerines. We sampled three resident mosquito species (Aedes taeniorhynchus, Culex quinquefasciatus, and Aedes aegypti) using CDC light and gravid traps on three islands in 2012, 2013, and 2014. We sampled along altitudinal gradients to ask whether there are mosquito-free refugia at higher elevations as there are in Hawaii. We captured both Ae. taeniorhynchus and Cx. quinquefasciatus at all sites. However, abundances differed across islands and years and declined significantly with elevation. Aedes aegypti were scarce and limited to areas of human inhabitation. These results were corroborated by two negative binomial regression models which found altitude, year, trap type, and island as categorized by human inhabitation to be significant factors influencing the distributions of both Ae. taeniorhynchus and Cx. quinquefasciatus. Annual differences at the highest altitudes in Isabela and Santa Cruz indicate the lack of a stable highland refuge if either species is found to be a major vector of a parasite, such as avian malaria in Galapagos. Further work is needed to confirm the vector potential of both species to understand the disease dynamics of avian malaria in Galapagos.


Assuntos
Aedes/fisiologia , Culex/fisiologia , Altitude , Animais , Reservatórios de Doenças , Equador , Humanos , Mosquitos Vetores , Dinâmica Populacional , Análise de Regressão
7.
PLoS One ; 12(9): e0184504, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28902879

RESUMO

There is an increased interest in potential zoonotic malarias. To date, Plasmodium malariae that infects humans remains indistinguishable from Plasmodium brasilianum, which is widespread among New World primates. Distributed throughout tropical Central and South America, the Callitrichidae are small arboreal primates in which detection of natural Plasmodium infection has been extremely rare. Most prior screening efforts have been limited to small samples, the use of low-probability detection methods, or both. Rarely have screening efforts implemented a longitudinal sampling design. Through an annual mark-recapture program of two sympatric callitrichids, the emperor (Saguinus imperator) and saddleback (Saguinus fuscicollis) tamarins, whole blood samples were screened for Plasmodium by microscopy and nested PCR of the cytochrome b gene across four consecutive years (2012-2015). Following the first field season, approximately 50% of the samples collected each subsequent year were from recaptured individuals. In particular, out of 245 samples from 129 individuals, 11 samples from 6 individuals were positive for Plasmodium, and all but one of these infections was found in S. imperator. Importantly, the cytochrome b sequences were 100% identical to former isolates of P. malariae from humans and P. brasilianum from Saimiri sp. Chronic infections were detected as evidenced by repeated infections (7) from two individuals across the 4-year study period. Furthermore, 4 of the 5 infected emperor tamarins were part of a single group spanning the entire study period. Overall, the low prevalence reported here is consistent with previous findings. This study identifies two new natural hosts for P. brasilianum and provides evidence in support of chronic infections in wildlife populations. Given that callitrichids are often found in mixed-species associations with other primates and can be resilient to human-disturbed environments, they could contribute to the maintenance of P. malariae populations if future work provides entomological and epidemiological evidence indicating human zoonotic infections.


Assuntos
Malária/epidemiologia , Malária/veterinária , Doenças dos Macacos/epidemiologia , Saguinus/parasitologia , Animais , Animais Selvagens , Doença Crônica , DNA de Protozoário/genética , Feminino , Incidência , Malária/parasitologia , Masculino , Doenças dos Macacos/parasitologia , Peru/epidemiologia , Filogenia , Plasmodium/genética , Plasmodium/isolamento & purificação , Reação em Cadeia da Polimerase/veterinária , Análise de Sequência de DNA
8.
Science ; 356(6341)2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28572335

RESUMO

We have a limited understanding of the genetic and molecular basis of evolutionary changes in the size and proportion of limbs. We studied wing and pectoral skeleton reduction leading to flightlessness in the Galapagos cormorant (Phalacrocorax harrisi). We sequenced and de novo assembled the genomes of four cormorant species and applied a predictive and comparative genomics approach to find candidate variants that may have contributed to the evolution of flightlessness. These analyses and cross-species experiments in Caenorhabditis elegans and in chondrogenic cell lines implicated variants in genes necessary for transcriptional regulation and function of the primary cilium. Cilia are essential for Hedgehog signaling, and humans affected by skeletal ciliopathies suffer from premature bone growth arrest, mirroring skeletal features associated with loss of flight.


Assuntos
Evolução Biológica , Aves/genética , Genoma/genética , Asas de Animais/fisiologia , Animais , Aves/classificação , Aves/fisiologia , Osso e Ossos/anatomia & histologia , Caenorhabditis elegans/genética , Diferenciação Celular/genética , Linhagem Celular , Condrogênese/genética , Cílios/genética , Equador , Regulação da Expressão Gênica/genética , Variação Genética , Proteínas de Homeodomínio/genética , Mutação , Filogenia , Asas de Animais/anatomia & histologia
9.
Ecol Evol ; 5(16): 3264-71, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26380662

RESUMO

Parasites comprise a significant percentage of the biodiversity of the planet and are useful systems to test evolutionary and ecological hypotheses. In this study, we analyze the effect of host species identity and the immediate local species assemblage within mixed species colonies of nesting seabirds on patterns of genetic clustering within two species of multihost ectoparasitic lice. We use three genetic markers (one mitochondrial, COI, and two nuclear, EF1-α and wingless) and maximum likelihood phylogenetic trees to test whether (1) parasites show lineage sorting based on their host species; and (2) switching of lineages to the alternate host species depends on the immediate local species assemblage of individual hosts within a colony. Specifically, we examine the genetic structure of two louse species: Eidmanniella albescens, infecting both Nazca (Sula granti) and blue-footed boobies (Sula nebouxii), and Fregatiella aurifasciata, infecting both great (Fregata minor) and magnificent frigatebirds (Fregata magnificens). We found that host species identity was the only factor explaining the patterns of genetic structure in both parasites. In both cases, there is evident genetic differentiation depending on the host species. Thus, a revision of the taxonomy of these louse species is needed. One possible explanation of this pattern is extremely low louse migration rates between host species, perhaps influenced by fine-scale spatial separation of host species within mixed colonies, and low parasite infrapopulation numbers.

10.
Integr Zool ; 9(5): 623-39, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25236691

RESUMO

Many carnivores require large ranges to meet their ecological and energetic needs; however, anthropogenic changes threaten species and their habitats. Camera traps have been used to effectively collect data on carnivores in a variety of habitat types; however, a single survey effort is typically limited to species that have similar body size, habitat use and movement patterns, and individual identification of animals is not always possible. We evaluated whether scat detection dogs could effectively survey for 4 wide-ranging felids that vary in these characteristics: jaguars (Panthera onca), pumas (Puma concolor), ocelots (Leopardus pardalis) and oncillas (Leopardus tigrinus). From June to October 2009 and May to August 2011, a detection dog-handler team detected 588 scats, from which 176 unique genotypes were detected. We assigned sex to 84.7% of the genotyped scats and identified 55 individuals multiple times. The effectiveness of these noninvasive techniques (detection dogs and genetic analyses of scat) not only opens the door for additional studies in areas that were previously difficult or impossible with standard survey techniques, but also provides conservationists with a set of tools that overcome some of the limitations associated with the use of camera traps alone.


Assuntos
Conservação dos Recursos Naturais/métodos , Felidae/genética , Animais , Argentina , DNA Mitocondrial/genética , Cães , Fezes , Feminino , Genótipo , Masculino , Repetições de Microssatélites , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA