Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 16(7): e0010565, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35857744

RESUMO

Timely, accurate, and comparative data on human mobility is of paramount importance for epidemic preparedness and response, but generally not available or easily accessible. Mobile phone metadata, typically in the form of Call Detail Records (CDRs), represents a powerful source of information on human movements at an unprecedented scale. In this work, we investigate the potential benefits of harnessing aggregated CDR-derived mobility to predict the 2015-2016 Zika virus (ZIKV) outbreak in Colombia, when compared to other traditional data sources. To simulate the spread of ZIKV at sub-national level in Colombia, we employ a stochastic metapopulation epidemic model for vector-borne diseases. Our model integrates detailed data on the key drivers of ZIKV spread, including the spatial heterogeneity of the mosquito abundance, and the exposure of the population to the virus due to environmental and socio-economic factors. Given the same modelling settings (i.e. initial conditions and epidemiological parameters), we perform in-silico simulations for each mobility network and assess their ability in reproducing the local outbreak as reported by the official surveillance data. We assess the performance of our epidemic modelling approach in capturing the ZIKV outbreak both nationally and sub-nationally. Our model estimates are strongly correlated with the surveillance data at the country level (Pearson's r = 0.92 for the CDR-informed network). Moreover, we found strong performance of the model estimates generated by the CDR-informed mobility networks in reproducing the local outbreak observed at the sub-national level. Compared to the CDR-informed networks, the performance of the other mobility networks is either comparatively similar or substantially lower, with no added value in predicting the local epidemic. This suggests that mobile phone data captures a better picture of human mobility patterns. This work contributes to the ongoing discussion on the value of aggregated mobility estimates from CDRs data that, with appropriate data protection and privacy safeguards, can be used for social impact applications and humanitarian action.


Assuntos
Epidemias , Infecção por Zika virus , Zika virus , Animais , Colômbia/epidemiologia , Humanos , Mosquitos Vetores , Infecção por Zika virus/epidemiologia
2.
PLoS Negl Trop Dis ; 15(5): e0009392, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34019536

RESUMO

Dengue virus remains a significant public health challenge in Brazil, and seasonal preparation efforts are hindered by variable intra- and interseasonal dynamics. Here, we present a framework for characterizing weekly dengue activity at the Brazilian mesoregion level from 2010-2016 as time series properties that are relevant to forecasting efforts, focusing on outbreak shape, seasonal timing, and pairwise correlations in magnitude and onset. In addition, we use a combination of 18 satellite remote sensing imagery, weather, clinical, mobility, and census data streams and regression methods to identify a parsimonious set of covariates that explain each time series property. The models explained 54% of the variation in outbreak shape, 38% of seasonal onset, 34% of pairwise correlation in outbreak timing, and 11% of pairwise correlation in outbreak magnitude. Regions that have experienced longer periods of drought sensitivity, as captured by the "normalized burn ratio," experienced less intense outbreaks, while regions with regular fluctuations in relative humidity had less regular seasonal outbreaks. Both the pairwise correlations in outbreak timing and outbreak trend between mesoresgions were best predicted by distance. Our analysis also revealed the presence of distinct geographic clusters where dengue properties tend to be spatially correlated. Forecasting models aimed at predicting the dynamics of dengue activity need to identify the most salient variables capable of contributing to accurate predictions. Our findings show that successful models may need to leverage distinct variables in different locations and be catered to a specific task, such as predicting outbreak magnitude or timing characteristics, to be useful. This advocates in favor of "adaptive models" rather than "one-size-fits-all" models. The results of this study can be applied to improving spatial hierarchical or target-focused forecasting models of dengue activity across Brazil.


Assuntos
Dengue/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Previsões/métodos , Brasil/epidemiologia , Humanos , Modelos Estatísticos , Estações do Ano , Tempo (Meteorologia)
3.
PLoS One ; 15(9): e0238214, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32946442

RESUMO

Brazil detected community transmission of COVID-19 on March 13, 2020. In this study we identified which areas in the country were the most vulnerable for COVID-19, both in terms of the risk of arrival of cases, the risk of sustained transmission and their social vulnerability. Probabilistic models were used to calculate the probability of COVID-19 spread from São Paulo and Rio de Janeiro, the initial hotspots, using mobility data from the pre-epidemic period, while multivariate cluster analysis of socio-economic indices was done to identify areas with similar social vulnerability. The results consist of a series of maps of effective distance, outbreak probability, hospital capacity and social vulnerability. They show areas in the North and Northeast with high risk of COVID-19 outbreak that are also highly socially vulnerable. Later, these areas would be found the most severely affected. The maps produced were sent to health authorities to aid in their efforts to prioritize actions such as resource allocation to mitigate the effects of the pandemic. In the discussion, we address how predictions compared to the observed dynamics of the disease.


Assuntos
Betacoronavirus , Infecções por Coronavirus/transmissão , Modelos Teóricos , Morbidade/tendências , Pneumonia Viral/transmissão , Brasil/epidemiologia , COVID-19 , Análise por Conglomerados , Infecções por Coronavirus/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Previsões/métodos , Humanos , Pandemias , Pneumonia Viral/epidemiologia , SARS-CoV-2 , Fatores Socioeconômicos
4.
Proc Natl Acad Sci U S A ; 114(22): E4334-E4343, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28442561

RESUMO

We use a data-driven global stochastic epidemic model to analyze the spread of the Zika virus (ZIKV) in the Americas. The model has high spatial and temporal resolution and integrates real-world demographic, human mobility, socioeconomic, temperature, and vector density data. We estimate that the first introduction of ZIKV to Brazil likely occurred between August 2013 and April 2014 (90% credible interval). We provide simulated epidemic profiles of incident ZIKV infections for several countries in the Americas through February 2017. The ZIKV epidemic is characterized by slow growth and high spatial and seasonal heterogeneity, attributable to the dynamics of the mosquito vector and to the characteristics and mobility of the human populations. We project the expected timing and number of pregnancies infected with ZIKV during the first trimester and provide estimates of microcephaly cases assuming different levels of risk as reported in empirical retrospective studies. Our approach represents a modeling effort aimed at understanding the potential magnitude and timing of the ZIKV epidemic and it can be potentially used as a template for the analysis of future mosquito-borne epidemics.


Assuntos
Infecção por Zika virus/epidemiologia , Aedes/virologia , América/epidemiologia , Animais , Brasil/epidemiologia , Epidemias , Feminino , Humanos , Recém-Nascido , Masculino , Microcefalia/complicações , Microcefalia/epidemiologia , Modelos Biológicos , Modelos Estatísticos , Mosquitos Vetores/virologia , Gravidez , Complicações Infecciosas na Gravidez/epidemiologia , Estudos Retrospectivos , Fatores de Risco , Processos Estocásticos , Zika virus/isolamento & purificação , Infecção por Zika virus/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA