Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(4)2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35208122

RESUMO

In this work, novel adsorbents based on 3D hierarchical silica monoliths functionalized with thiol groups were used for the removal of Hg(II) ions from an acidic aqueous solution (pH 3.5). Silica monoliths were synthesized by using two different pluronic triblock polymers (P123 and F127) to study the effect of porous structure on their sorption capacity. Before and after functionalization by grafting with 3-mercaptopropyltrimethoxysilane (MPTMS), the monoliths were characterized by several techniques, and their Hg(II) removal potential was evaluated in batch experiments at 28 °C and pH 3.5, using different initial concentrations of Hg(II) ions in water (200-500 mg L-1). The thiol groups of the monoliths calcined at 550 °C showed thermal stability up to 300 °C (from TG/DTG). The functionalized monolith synthesized with P123 polymer and polyethylene glycol showed favorable hierarchical macro-mesopores for Hg(II) adsorption. M(P123)-SH exhibited 97% removal of Hg(II) at concentration 200 mg L-1. Its maximum adsorption capacity (12.2 mmol g-1) was two times higher than that of M(F127)-SH, demonstrating that the 3D hierarchical macro-mesoporosity allowing accessibility of Hg(II) to thiol groups favors the physical and chemical adsorption of Hg(II) under slightly acidic conditions.

2.
Materials (Basel) ; 13(8)2020 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-32325750

RESUMO

Water pollution by heavy metals represents several health risks. Conventional technologies employed to eliminate lead ions from residual or drinking water are expensive, therefore an efficient and low-cost technique is required and adsorption processes are a good alternative. In this work, the goal was to determine the adsorption capacity of a Disordered Mesoporous Silica 1 material (DMS-1) functionalized with amino groups, for Pb(II) ions removal. DMS-1 was prepared by sol-gel method and the incorporation of amino groups was performed by ex-situ method. As the source of amine groups, (3-Aminopropyl) triethoxysilane (APTES) was used and three different xNH2/DMS-1 molar ratios (0.2, 0.3, 0.4) were evaluated. In order to evaluate the incorporation of the amino group into the mesopore channels, thermal and structural analysis were made through Thermogravimetric Analysis (TGA), nitrogen adsorption-desorption at 77 K by Specific Brunauer-Emmett-Teller (SBET) method, Fourier Transfer Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and X-Ray Photoelectron Spectroscopy (XPS). The higher Pb(II) ions removal was achieved with the 0.3 molar proportion of xNH2/DMS-1 reaching 99.44% efficiency. This result suggests that the functionalized material can be used as an efficient adsorbent for Pb(II) ions from aqueous solution.

3.
Materials (Basel) ; 13(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093053

RESUMO

Tridimensional cubic mesoporous silica, SBA-16, functionalized with aminopropyl groups, were employed as adsorbents for Pb2+ ion removal from aqueous solution. The adsorption capacity was investigated for the effect of pH, contact time, temperature, and concentration of 3-aminopropyltriethoxysilane (APTES) employed for adsorbent functionalization. The textural properties and morphology of the adsorbents were evaluated by N2 physisorption, small-angle X-ray diffraction (XRD), diffuse reflectance spectroscopy (UV-vis), and transmission electron microscopy (TEM). The functionalization of the SBA-16 was evaluated by elemental analysis (N), thermogravimetric analysis (TG), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). Batch adsorption studies show that the total Pb2+ ions removal was archived on adsorbent having an optimized amount of aminopropyl groups (2N-SBA-16). The maximum of Pb2+ ions removal occurred at optimized adsorption conditions: pH = 5-6, contact time 40 min, and at a low initial lead concentration in solution (200 mg L-1). Under the same adsorption conditions, the amino-functionalized SBA-16 with cubic 3D unit cell structure exhibited higher adsorption capability than its SBA-15 counterpart with uniform mesoporous channels.

4.
Materials (Basel) ; 11(6)2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29867061

RESUMO

In this work we report the effects of support structural properties and its modification with some metal oxides modifiers on the catalytic behavior of Au catalysts in the total CO oxidation at 20 °C. Au catalysts were supported on mesoporous silica materials (MSM) having different structural properties: Channel-like (SBA-15), cage-like (SBA-16), hexagonal (HMS), and disordered (DMS-1) structures. The effect of the modifier was evaluated by comparison of the catalytic response of the SBA-15-based catalysts modified with MgO, Fe2O3, TiO2, and CeO2. The chemical, structural, and electronic properties of the catalysts were investigated by a variety of techniques (metal content analysis by ICP-OES, N2 physisorption, XRD, UV-vis DRS, DRIFTS of adsorbed CO and OH regions, oxygen storage capacity (OSC), HR-TEM, and XPS). The activity of calcined catalysts in the CO oxidation reaction were evaluated at steady state conditions, at 20 °C, atmospheric pressure, and when using, as feed, a 1%CO/1%O2/98% gas mixture. The work clearly demonstrated that all Au catalysts supported on the mesoporous silicas modified with metal oxides were more active than the Au/SBA-15 and Au/MgO reference ones. The support structural properties and type of dopant were important factors influencing on the catalyst behavior. Concerning the support textural properties, it was found that the HMS substrate with the wormhole-structure offers better porosity and specific surface area than their silica counterparts having channel-like (SBA-15), cage-like (SBA-16), and disordered (DMS-1) mesoporous structures. Concerning the effect of modifier, the best catalytic response was achieved with the catalysts modified with MgO. After activation by calcination at 200 °C for 4 h, the Au/MgO/HMS catalyst exhibited the best catalytic performance, which was ascribed to the combined effects of the best structural properties, a large support oxygen storage capacity and homogeneous distribution of gold particles on the support (external and inner). Implications of the type of active sites (Au1+ or Au°), support structural properties and role of modifier on the catalytic activity are discussed.

5.
Materials (Basel) ; 6(9): 4139-4167, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-28788323

RESUMO

SBA-15 is an interesting mesoporous silica material having highly ordered nanopores and a large surface area, which is widely employed as catalyst supports, absorbents, drug delivery materials, etc. Since it has a lack of functionality, heteroatoms and organic functional groups have been incorporated by direct or post-synthesis methods in order to modify their functionality. The aim of this article is to review the state-of-the-art related to the use of SBA-15-based mesoporous systems as supports for hydrodesulfurization (HDS) catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA