Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 4: e2670, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27867765

RESUMO

BACKGROUND: Hepatitis C virus (HCV) core protein, in addition to its structural role to form the nucleocapsid assembly, plays a critical role in HCV pathogenesis by interfering in several cellular processes, including microRNA and mRNA homeostasis. The C-terminal truncated HCV core protein (C124) is intrinsically unstructured in solution and is able to interact with unspecific nucleic acids, in the micromolar range, and to assemble into nucleocapsid-like particles (NLPs) in vitro. The specificity and propensity of C124 to the assembly and its implications on HCV pathogenesis are not well understood. METHODS: Spectroscopic techniques, transmission electron microscopy and calorimetry were used to better understand the propensity of C124 to fold or to multimerize into NLPs when subjected to different conditions or in the presence of unspecific nucleic acids of equivalent size to cellular microRNAs. RESULTS: The structural analysis indicated that C124 has low propensity to self-folding. On the other hand, for the first time, we show that C124, in the absence of nucleic acids, multimerizes into empty NLPs when subjected to a pH close to its isoelectric point (pH ≈ 12), indicating that assembly is mainly driven by charge neutralization. Isothermal calorimetry data showed that the assembly of NLPs promoted by nucleic acids is enthalpy driven. Additionally, data obtained from fluorescence correlation spectroscopy show that C124, in nanomolar range, was able to interact and to sequester a large number of short unspecific nucleic acids into NLPs. DISCUSSION: Together, our data showed that the charge neutralization is the major factor for the nucleocapsid-like particles assembly from C-terminal truncated HCV core protein. This finding suggests that HCV core protein may physically interact with unspecific cellular polyanions, which may correspond to microRNAs and mRNAs in a host cell infected by HCV, triggering their confinement into infectious particles.

2.
FEBS J ; 273(7): 1463-75, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16689932

RESUMO

To investigate the role of protein-protein and protein-nucleic acid interactions in virus assembly, we compared the stabilities of native bacteriophage MS2, virus-like particles (VLPs) containing nonviral RNAs, and an assembly-defective coat protein mutant (dlFG) and its single-chain variant (sc-dlFG). Physical (high pressure) and chemical (urea and guanidine hydrochloride) agents were used to promote virus disassembly and protein denaturation, and the changes in virus and protein structure were monitored by measuring tryptophan intrinsic fluorescence, bis-ANS probe fluorescence, and light scattering. We found that VLPs dissociate into capsid proteins that remain folded and more stable than the proteins dissociated from authentic particles. The proposed model is that the capsid disassembles but the protein remains bound to the heterologous RNA encased by VLPs. The dlFG dimerizes correctly, but fails to assemble into capsids, because it lacks the 15-amino acid FG loop involved in inter-dimer interactions at the viral fivefold and quasi-sixfold axes. This protein was very unstable and, when compared with the dissociation/denaturation of the VLPs and the wild-type virus, it was much more susceptible to chemical and physical perturbation. Genetic fusion of the two subunits of the dimer in the single-chain dimer sc-dlFG stabilized the protein, as did the presence of 34-bp poly(GC) DNA. These studies reveal mechanisms by which interactions in the capsid lattice can be sufficiently stable and specific to ensure assembly, and they shed light on the processes that lead to the formation of infectious viral particles.


Assuntos
DNA Viral , Levivirus , Proteínas Virais , Naftalenossulfonato de Anilina/química , Corantes Fluorescentes/química , Guanidina/química , Temperatura Alta , Levivirus/química , Levivirus/genética , Levivirus/metabolismo , Substâncias Macromoleculares , Mutação , Conformação de Ácido Nucleico , Conformação Proteica , Desnaturação Proteica , Ureia/química , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
3.
Eur J Biochem ; 271(1): 135-45, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14686926

RESUMO

The information required for successful assembly of an icosahedral virus is encoded in the native conformation of the capsid protein and in its interaction with the nucleic acid. Here we investigated how the packing and stability of virus capsids are sensitive to single amino acid substitutions in the coat protein. Tryptophan fluorescence, bis-8-anilinonaphthalene-1-sulfonate fluorescence, CD and light scattering were employed to measure urea- and pressure-induced effects on MS2 bacteriophage and temperature sensitive mutants. M88V and T45S particles were less stable than the wild-type forms and completely dissociated at 3.0 kbar of pressure. M88V and T45S mutants also had lower stability in the presence of urea. We propose that the lower stability of M88V particles is related to an increase in the cavity of the hydrophobic core. Bis-8-anilinonaphthalene-1-sulfonate fluorescence increased for the pressure-dissociated mutants but not for the urea-denatured samples, indicating that the final products were different. To verify reassembly of the particles, gel filtration chromatography and infectivity assays were performed. The phage titer was reduced dramatically when particles were treated with a high concentration of urea. In contrast, the phage titer recovered after high-pressure treatment. Thus, after pressure-induced dissociation of the virus, information for correct reassembly was preserved. In contrast to M88V and T45S, the D11N mutant virus particle was more stable than the wild-type virus, in spite of it also possessing a temperature sensitive growth phenotype. Overall, our data show how point substitutions in the capsid protein, which affect either the packing or the interaction at the protein-RNA interface, result in changes in virus stability.


Assuntos
Proteínas do Capsídeo/química , Iridoviridae/química , Levivirus/química , Proteínas/química , RNA/química , Cromatografia em Gel , Dicroísmo Circular , Dimerização , Escherichia coli/virologia , Modelos Moleculares , Conformação Proteica , Desnaturação Proteica , Estrutura Secundária de Proteína , Espectrometria de Fluorescência , Triptofano , Ureia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA