Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Fungi (Basel) ; 10(2)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38392814

RESUMO

Since Agostino Bassi first isolated the fungal pathogenic agent of the white muscardine in insects (later named Beauveria bassiana in his honor), and Ilya Mechnikov cultivated Metarhizium anisopliae as a first approach to use fungi as pest control agents, many other entomopathogenic fungi have been studied over the last two centuries [...].

2.
Acta Trop ; 249: 107061, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37918505

RESUMO

Aedes aegypti is a vector of various disease-causing arboviruses. Chemical insecticide-based methods for mosquito control have increased resistance in different parts of the world. Thus, alternative control agents such as the entomopathogenic fungi are excellent candidates to control mosquitoes as part of an ecofriendly strategy. There is evidence of the potential of entomopathogenic fungal conidia and blastospores for biological control of eggs, larval and adult stages, as well as the pathogenicity of fungal microsclerotia against adults and eggs. However, there are no studies on the pathogenicity of microsclerotia against either aquatic insects or insects that develop part of their life cycle in the water, such as the A. aegypti larvae. In this study, we assayed the production of microsclerotia and their pathogenicity against A. aegypti larvae of two isolates of Metarhizium robertsii, i.e., CEP 423 isolated in La Plata, Argentina, and the model ARSEF 2575. Both isolates significantly reduced the survival of A. aegypti exposed to their microsclerotia. The fungus-larva interaction resulted in a delayed response in the host. This was evidenced by the expression of some humoral immune system genes such as defensins and cecropin on the 9th day post-infection, when the fungal infection was consolidated as a successful process that culminates in larvae mortality. In conclusion, M. robertsii microsclerotia are promising propagules to be applied as biological control agents against mosquitoes since they produce pathogenic conidia against A. aegypti larvae.


Assuntos
Aedes , Controle Biológico de Vetores , Animais , Controle Biológico de Vetores/métodos , Aedes/fisiologia , Larva/microbiologia , Virulência , Mosquitos Vetores , Controle de Mosquitos/métodos , Esporos Fúngicos/fisiologia
3.
Appl Microbiol Biotechnol ; 108(1): 23, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38159119

RESUMO

Insect cuticular lipids, especially epicuticular hydrocarbons (CHC), have a significant role in insect ecology and interactions with other organisms, including fungi. The CHC composition of a specific insect species may influence the outcome of the interaction with a specific fungal strain. Some insects, such as Piezodorus guildinii, have low susceptibility towards fungal infections seemingly due to their CHC composition. The entomopathogenic fungus Beauveria bassiana can assimilate CHC and incorporate them as building blocks via cytochrome P450 monooxygenases (CYPs). However, little is known about other enzymes that promote the degradation/assimilation of these cuticular components. In this study, we performed a transcriptomic analysis to evaluate the in vitro response of two virulence-contrasting B. bassiana strains when grown on three different P. guildinii CHC sources. We found a different expression profile of virulence-related genes, as well as different GO and KEGG parameters enriched at 4 days post-inoculation, which could help account for the intrinsic virulence and for an alkane-priming virulence enhancement effect. The hypovirulent strain predominantly showed higher expression of cuticle penetration genes, including chitinases, proteases, and CYPs, with GO term categories of "heme binding," "monooxygenase activity," and "peroxisome" pathways enriched. The hypervirulent strain showed higher expression of cell wall remodeling and cell cycle genes, and cuticle adhesion and a distinct set of CYPs, with GO categories of "DNA-binding transcription factor activity" and KEGG pathways corresponding to "meiosis-yeast" and "cell cycle" enriched. These results suggest a delay and alternate routes in pathogenicity-related metabolism in the hypovirulent strain in comparison with the hypervirulent strain. KEY POINTS: •Transcriptomics of two B. bassiana strains grown in P. guildinii cuticular components •Virulence-related genes correlated with virulence enhancement towards P. guildinii •Differentially expressed genes, GOs and KEGGs showed different metabolic timelines associated with virulence.


Assuntos
Beauveria , Animais , Virulência , Insetos/microbiologia , Perfilação da Expressão Gênica , Sistema Enzimático do Citocromo P-450/metabolismo , Lipídeos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
4.
J Fungi (Basel) ; 9(12)2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38132763

RESUMO

Metarhizium robertsii microsclerotia are fungal aggregates composed of compacted, pigmented hyphae. As they are highly tolerant to desiccation and produce infective conidia, they are promising candidates to be formulated as bioinsecticides. Despite this potential, the nature of the pigments within these structures remains unclear. In this study, routine culture media used for the differentiation of M. robertsii microsclerotia were supplemented with four melanin inhibitors, and the resulting propagules were characterized. Inhibitors of the 1,8-dihydroxynaphthalene (DHN)-melanin biosynthetic pathway such as tricyclazole and guaiacol induced significant phenotypic and molecular modifications in the obtained M. robertsii propagules, which exhibited a more spherical shape, reduced size, and increased susceptibility to desiccation, heat, and oxidative stress than microsclerotia obtained without inhibitors. Additionally, genes encoding for a polyketide synthase (Mrpks2) and a putative 1,3,6,8-tetrahydroxynaphthalene reductase (Mrthnr), potentially involved in the DHN-melanin biosynthetic pathway, were upregulated in fungi grown in the inhibitor-added media. In conclusion, M. robertsii microsclerotia contain melanins of type DHN that might play a role in both microsclerotia differentiation and environmental stress tolerance.

5.
Sci Rep ; 13(1): 16506, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783781

RESUMO

Entomopathogenic fungi such as Beauveria bassiana are the only insect pathogens able to start the infection process by penetrating through the host cuticle. However, some insects try to avoid fungal infection by embedding their cuticle with antifungal compounds. This is the case of the red flour beetle Tribolium castaneum, which generates economical loss of great significance in stored product environments worldwide. In this study, T. castaneum adults were fed during different time periods (from 3 to 72 h) on B. bassiana conidia-covered corn kernels. The progression of fungal infection was monitored using the dual RNA-seq technique to reconstruct the temporal transcriptomic profile and to perform gene enrichment analyses in both interacting organisms. After mapping the total reads with the B. bassiana genome, 904 genes were identified during this process. The more expressed fungal genes were related to carbon catabolite repression, cation binding, peptidase inhibition, redox processes, and stress response. Several immune-related genes from Toll, IMD, and JNK pathways, as well as genes related to chitin modification, were found to be differentially expressed in fungus-exposed T. castaneum. This study represents the first dual transcriptomic approach to help understand the interaction between the entomopathogenic fungus B. bassiana and its tolerant host T. castaneum.


Assuntos
Beauveria , Micoses , Tribolium , Animais , Tribolium/genética , Tribolium/metabolismo , Beauveria/fisiologia , Transcriptoma , RNA-Seq
6.
Fungal Biol ; 127(7-8): 1209-1217, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37495310

RESUMO

Little is known about the impact of hypoxia and anoxia during mycelial growth on tolerance to different stress conditions of developing fungal conidia. Conidia of the insect-pathogenic fungus Metarhizium robertsii were produced on potato dextrose agar (PDA) medium under normoxia (control = normal oxygen concentrations), continuous hypoxia, and transient anoxia, as well as minimal medium under normoxia. The tolerance of the conidia produced under these different conditions was evaluated in relation to wet heat (heat stress), menadione (oxidative stress), potassium chloride (osmotic stress), UV radiation, and 4-nitroquinoline-1-oxide (=4-NQO genotoxic stress). Growth under hypoxic condition induced higher conidial tolerance of M. robertsii to menadione, KCl, and UV radiation. Transient anoxic condition induced higher conidial tolerance to KCl and UV radiation. Nutritional stress (i.e., minimal medium) induced higher conidial tolerance to heat, menadione, KCl, and UV radiation. However, neither of these treatments induced higher tolerance to 4-NQO. The gene hsp30 and hsp101 encoding a heat shock protein was upregulated under anoxic condition. In conclusion, growth under hypoxia and anoxia produced conidia with higher stress tolerances than conidia produced in normoxic condition. The nutritive stress generated by minimal medium, however, induced much higher stress tolerances. This condition also caused the highest level of gene expression in the hsp30 and hsp101 genes. Thus, the conidia produced under nutritive stress, hypoxia, and anoxia had greater adaptation to stress.


Assuntos
Metarhizium , Vitamina K 3 , Esporos Fúngicos , Vitamina K 3/metabolismo , Raios Ultravioleta , Hipóxia/metabolismo
7.
Trop Med Infect Dis ; 8(5)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37235293

RESUMO

The blood-sucking bug Triatoma infestans is the main Chagas disease vector in the Southern Cone of Latin America. Populations resistant to pyrethroid insecticides have been detected in the early 2000s and then expanded to the endemic area of northern Salta province, Argentina. In this context, the entomopathogenic fungus Beauveria bassiana has been shown to be pathogenic to pyrethroid-resistant T. infestans. In this study, both the bioinsecticidal activity and the residual effect of an alginate-based microencapsulation of a native strain of B. bassiana (Bb-C001) were tested under semi-field conditions against pyrethroid-resistant T. infestans nymphs. Fungal microencapsulated formulation caused higher nymph mortality than the unmicroencapsulated fungus and contributed to maintaining the conidial viability throughout the period evaluated under the tested conditions. These results suggest that alginate microencapsulation is an effective, simple, low-cost method that could be incorporated into the formulation of a bioinsecticide as a strategy to reduce the vector transmission of Chagas disease.

8.
Pathogens ; 11(5)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35631008

RESUMO

Entomopathogenic fungi such as Beauveria bassiana are extensively used for the control of insect pests worldwide. They infect mostly by adhesion to the insect surface and penetration through the cuticle. However, some insects, such as the red flour beetle Tribolium castaneum (Herbst), have evolved resistance by embedding their cuticle with antifungal compounds. Thus, they avoid fungal germination on the cuticle, which result in low susceptibility to entomopathogenic fungi. In adult T. castaneum, these antifungals are the well-known defensive compounds methyl-1,4- and ethyl-1,4-benzoquinone. In this study, we added B. bassiana conidia on the diet of adult beetles to study the effect of the entomopathogen on the secretion and detection of the beetle volatile blend containing both benzoquinones. The compounds were analyzed by solid phase microextraction coupled to gas chromatography-flame ionization detection, and were detected by electroantennography. In addition, we measured the expression level of four genes encoding for two odorant-binding proteins (OBP), one chemosensory protein (CSP), and one odorant receptor (OR) in both healthy and fungus-treated insects. Significant alterations in the secretion of both benzoquinones, as well as in the perception of methyl-1,4-benzoquinone, were found in fungus-treated insects. TcOBP7D, TcOBP0A and TcCSP3A genes were down-regulated in insects fed conidia for 12 and 48 h, and the latter gene was up-regulated in 72 h samples. TcOR1 expression was not altered at the feeding times studied. We conclude that fungus-treated insects alter both secretion and perception of benzoquinones, but additional functional and genetic studies are needed to fully understand the effects of fungal infection on the insect chemical ecology.

9.
J Fungi (Basel) ; 8(5)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35628744

RESUMO

Entomopathogenic fungi are extensively used for the control of insect pests worldwide. Among them, Beauveria bassiana (Ascomycota: Hypocreales) produce a plethora of toxic secondary metabolites that either facilitate fungal invasion or act as immunosuppressive compounds. These toxins have different chemical natures, such as nonribosomal peptides and polyketides. Even though their precise role is poorly understood, they are usually linked to virulence. These fungal secondary metabolites are produced by the expression of gene clusters encoding the various proteins needed for their biosynthesis. Each cluster includes synthetases for nonribosomal peptides (NRPS), polyketides (PKS), or hybrid NRPS-PKS genes. The aim of this review is to summarize the information available from transcriptomics and quantitative PCR studies related to the expression of B. bassiana NRPS and PKS genes inside different insects as the infection progresses; as for the host immune response, to help understand the mechanisms that these toxins trigger as virulence factors, antimicrobials, or immunosuppressives within the context of a fungus-insect interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA