Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39159390

RESUMO

The renin-angiotensin system (RAS) is comprised of a series of peptides, receptors, and enzymes that play a pivotal role in maintaining cardiovascular homeostasis. Among the most important players in this system are the Angiotensin-II and Angiotensin-(1-7) peptides. Our group has recently demonstrated that alamandine (ALA), a peptide with structural and functional similarities to Angiotensin-(1-7), interacts with cardiomyocytes, enhancing contractility via the Mas-related G protein-coupled receptor member D (MrgD). It is currently unknown whether this modulation varies along the distinct phases of the day. To address this issue, we assessed the ALA-induced contractility response of cardiomyocytes from mice at four Zeitgeber times (ZTs). At ZT2 (light phase), ALA enhanced cardiomyocyte shortening in an MrgD receptor-dependent manner, which was associated with NO production. At ZT14 (dark phase), ALA induced a negative modulation on the cardiomyocyte contraction. ß-Alanine, an MrgD agonist, reproduced the time-of-day effects of ALA on myocyte shortening. L-NG-Nitroarginine Methyl Ester (L-NAME), an NO synthase inhibitor, blocked the increase in fractional shortening induced by ALA at ZT2. No effect of ALA on myocyte shortening was observed at ZTs 8 and 20. Our results show that ALA/MrgD signaling in cardiomyocytes is subject to temporal modulation. This finding has significant implications for pharmacological approaches that combine chronotherapy for cardiac conditions triggered by disruption of circadian rhythms and hormonal signaling.

2.
Thyroid ; 29(4): 502-512, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30747053

RESUMO

BACKGROUND: The secretion of pituitary hormones oscillates throughout the 24-hour period, indicating that circadian clock-mediated mechanisms regulate this process in the gland. Additionally, pituitary hormone synthesis has been shown to be altered in hypo- and hyperthyroidism. Although thyroid hormones can modulate the other peripheral clocks, the interaction between thyroid hormone levels and circadian clock gene expression in the anterior pituitary has yet to be elucidated. METHODS: Male Wistar rats were divided into three groups: control, hypothyroid, and hyperthyroid. Following the experimental procedures, animals were euthanized every three hours over the course of a 24-hour period. The anterior pituitary glands were excised and processed for mRNA expression analysis by quantitative reverse transcriptase polymerase chain reaction. One- and two-way analysis of variance as well as cosinor analysis were used to evaluate the time-of-day-dependent differential expression for each gene in each experimental group and their interactions. RESULTS: Hyperthyroidism increased the mRNA expression of core clock genes and thyrotrophic embryonic factor (Tef), as well as the mesor and amplitude of brain and muscle Arnt-like protein-1 (Bmal1) and the mesor of nuclear receptor subfamily 1 (Nr1d1) group D member 1, when compared to euthyroid animals. Hypothyroidism disrupted the circadian expression pattern of Bmal1 and period circadian regulator 2 (Per2) and decreased the mesor of Nr1d1 and Tef. Furthermore, it was observed that the pituitary content of Dio2 mRNA was unaltered in hyperthyroidism but substantially elevated in hypothyroidism during the light phase. The upregulated expression was associated with an increased mesor and amplitude, along with an advanced acrophase. The gene expression of all the pituitary hormones was found to be altered in hypo- and hyperthyroidism. Moreover, prolactin (Prl) and luteinizing hormone beta subunit (Lhb) displayed circadian expression patterns in the control group, which were disrupted in both the hypo- and hyperthyroid states. CONCLUSION: Taken together, the data demonstrate that hypo- and hyperthyroidism alter circadian clock gene expression in the anterior pituitary. This suggests that triiodothyronine plays an important role in the regulation of pituitary gland homeostasis, which could ultimately influence the rhythmic synthesis and/or secretion of all the anterior pituitary hormones.


Assuntos
Ritmo Circadiano , Hipertireoidismo/metabolismo , Hipotireoidismo/metabolismo , Adeno-Hipófise/metabolismo , Hormônios Adeno-Hipofisários/metabolismo , RNA Mensageiro/metabolismo , Animais , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Hipertireoidismo/genética , Hipertireoidismo/fisiopatologia , Hipotireoidismo/genética , Hipotireoidismo/fisiopatologia , Masculino , Adeno-Hipófise/fisiopatologia , Hormônios Adeno-Hipofisários/genética , RNA Mensageiro/genética , Ratos Wistar , Tireotropina/sangue , Fatores de Tempo , Transcriptoma , Tri-Iodotironina/sangue
3.
Free Radic Biol Med ; 119: 75-84, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29432800

RESUMO

At various biological levels, mammals must integrate with 24-hr rhythms in their environment. Daily fluctuations in stimuli/stressors of cardiac metabolism and oxidation-reduction (redox) status have been reported over the course of the day. It is therefore not surprising that the heart exhibits dramatic oscillations in various cellular processes over the course of the day, including transcription, translation, ion homeostasis, metabolism, and redox signaling. This temporal partitioning of cardiac processes is governed by a complex interplay between intracellular (e.g., circadian clocks) and extracellular (e.g., neurohumoral factors) influences, thus ensuring appropriate responses to daily stimuli/stresses. The purpose of the current article is to review knowledge regarding control of metabolism and redox biology in the heart over the course of the day, and to highlight whether disruption of these daily rhythms contribute towards cardiac dysfunction observed in various disease states.


Assuntos
Relógios Circadianos/fisiologia , Cardiopatias/metabolismo , Miocárdio/metabolismo , Oxirredução , Animais , Ritmo Circadiano/fisiologia , Cardiopatias/fisiopatologia , Humanos
4.
Chronobiol Int ; 35(2): 147-159, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29111822

RESUMO

Myocardial gene expression and metabolism fluctuate over the course of the day in association with changes in energy supply and demand. Time-of-day-dependent oscillations in myocardial processes have been linked to the intrinsic cardiomyocyte circadian clock. Triiodothyronine (T3) is an important modulator of heart metabolism and function. Recently, our group has reported time-of-day-dependent rhythms in cardiac T3 sensitivity, as well as, T3-mediated acute alterations on core clock components. Hypo and hyperthyroidism are the second most prevalent endocrine disease worldwide. Considering the importance of the cardiomyocyte circadian clock and T3 to cardiac physiology, the aim of this study was to investigate the consequences of chronic hypo and hyperthyroidism on 24-h rhythms of circadian clock genes in the heart. Hypo and hyperthyroidism was induced in rats by thyroidectomy (Tx) and i.p. injections of supraphysiological dose of T3, respectively. Here we report alterations in mRNA levels of the major core clock components (Bmal1, Per2, Nr1d1, and Rora) for both experimental conditions (with the exception of Per2 during hyperthyroid condition). Oscillations in mRNA levels of key glucose and fatty-acid metabolism genes known to be clock controlled (Pdk4, Ucp3, Acot1, and Cd36) were equally affected by the experimental conditions, especially during the hypothyroid state. These findings suggest that chronic alterations in thyroid status significantly impacts 24-h rhythms in circadian clock and metabolic genes in the heart. Whether these perturbations contribute toward the pathogenesis of cardiac dysfunction associated with hypo and hyperthyroidism requires further elucidation.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Hipertireoidismo/metabolismo , Miocárdio/metabolismo , Fatores de Transcrição ARNTL/genética , Animais , Regulação da Expressão Gênica/fisiologia , Glucose/metabolismo , Masculino , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Ratos Wistar
5.
Growth Horm IGF Res ; 24(6): 268-70, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25312793

RESUMO

Under physical activity a wide variety of cellular metabolic products and hormones are altered in the blood stream, including lactate, a metabolite of pyruvate reduction, and growth hormone (GH). Although a positive correlation between lactate and GH seems to exist during exercise, the role of lactate as a mediator of GH production has never been investigated. Thus, the aim of this study was to investigate whether lactate could activate the somatotropic axis and stimulate GH synthesis/release, contributing to the enhanced somatotropic activity described in exercise conditions. Male adult Wistar rats were acutely treated with sodium lactate [15 or 150µmols, i.p.] at the beginning of the active period (Zeitgeber time 13-14), and euthanized by decapitation 30, 60 and 120min after the injections. Serum GH concentration were determined using ELISA and Gh and Igf-1 mRNA expressions were quantified by qPCR. Serum GH concentration and Gh mRNA expression were increased 30min after lactate injections for both treatments. However, [15µmols] of lactate injection kept GH serum concentration chronically high throughout the experimental period. Igf-1 mRNA expression was increased only 60min after challenge with [15µmols] of lactate, time point which corresponded to 30min after the serum GH peak. The present results led us to conclude that lactate mediates activation of the somatotropic axis, therefore emphasizing its possible role on GH synthesis/release, and further indicating that it could play a part on the increased GH secretion observed in exercise conditions.


Assuntos
Hormônio do Crescimento/sangue , Fator de Crescimento Insulin-Like I/metabolismo , Ácido Láctico/farmacologia , Fígado/metabolismo , Hipófise/metabolismo , Animais , Ensaio de Imunoadsorção Enzimática , Hormônio do Crescimento/genética , Fator de Crescimento Insulin-Like I/genética , Fígado/efeitos dos fármacos , Masculino , Hipófise/efeitos dos fármacos , RNA Mensageiro/genética , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
J Pineal Res ; 57(1): 67-79, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24819547

RESUMO

Melatonin is a neurohormone that works as a nighttime signal for circadian integrity and health maintenance. It is crucial for energy metabolism regulation, and the diabetes effects on its synthesis are unresolved. Using diverse techniques that included pineal microdialysis and ultrahigh-performance liquid chromatography, the present data show a clear acute and sustained melatonin synthesis reduction in diabetic rats as a result of pineal metabolism impairment that is unrelated to cell death. Hyperglycemia is the main cause of several diabetic complications, and its consequences in terms of melatonin production were assessed. Here, we show that local high glucose (HG) concentration is acutely detrimental to pineal melatonin synthesis in rats both in vivo and in vitro. The clinically depressive action of high blood glucose concentration in melatonin levels was also observed in type 1 diabetes patients who presented a negative correlation between hyperglycemia and 6-sulfatoxymelatonin excretion. Additionally, high-mean-glycemia type 1 diabetes patients presented lower 6-sulfatoxymelatonin levels when compared to control subjects. Although further studies are needed to fully clarify the mechanisms, the present results provide evidence that high circulating glucose levels interfere with pineal melatonin production. Given the essential role played by melatonin as a powerful antioxidant and in the control of energy homeostasis, sleep and biological rhythms and knowing that optimal glycemic control is usually an issue for patients with diabetes, melatonin supplementation may be considered as an additional tool to the current treatment.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Hiperglicemia/metabolismo , Melatonina/análogos & derivados , Animais , Arilalquilamina N-Acetiltransferase/metabolismo , Sobrevivência Celular , Diabetes Mellitus Experimental/complicações , Humanos , Hiperglicemia/etiologia , Masculino , Melatonina/metabolismo , Microdiálise , Glândula Pineal/metabolismo , Ratos , Ratos Wistar
7.
Neurosci Res ; 81-82: 1-10, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24681283

RESUMO

Although the norepinephrine (NE) synchronization protocol was proved to be an important procedure for further modulating in vitro pineal melatonin synthesis, the maintenance of clock genes under the same conditions remained to be investigated. The aim of this study was to investigate the maintenance of the clock genes expression in pineal gland cultures under standard and NE-synchronized stimulation. The glands were separated into three experimental groups: Control, Standard (acute NE-stimulation), and NE-synchronized. The expression of Bmal1, Per2, Cry2, Rev-erbα, the clock controlled gene Dbp and Arylalkylamine-N-acetyltransferase were investigated, as well as melatonin content. No oscillations were observed in the expression of the investigated genes from the control group. Under Standard NE stimulation, the clock genes did not exhibit a rhythmic pattern of expression. However, in the NE-synchronized condition, a rhythmic expression pattern was observed in all cases. An enhancement in pineal gland responsiveness to NE stimulation, reflected in an advanced synthesis of melatonin was also observed. Our results reinforce our previous hypothesis that NE synchronization of pineal gland culture mimics the natural rhythmic release of NE in the gland, increasing melatonin synthesis and keeping the pineal circadian clock synchronized, ensuring the fine adjustments that are relied in the clockwork machinery.


Assuntos
Relógios Circadianos/efeitos dos fármacos , Relógios Circadianos/genética , Regulação da Expressão Gênica , Norepinefrina/farmacologia , Glândula Pineal/efeitos dos fármacos , Glândula Pineal/metabolismo , Fatores de Transcrição ARNTL/genética , Animais , Arilalquilamina N-Acetiltransferase/genética , Criptocromos/genética , Proteínas de Ligação a DNA/genética , Masculino , Melatonina/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Técnicas de Cultura de Órgãos , Proteínas Circadianas Period/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Fatores de Transcrição/genética
8.
J Pineal Res ; 55(3): 229-39, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23711171

RESUMO

The pineal gland, through melatonin, seems to be of fundamental importance in determining the metabolic adaptations of adipose and muscle tissues to physical training. Evidence shows that pinealectomized animals fail to develop adaptive metabolic changes in response to aerobic exercise and therefore do not exhibit the same performance as control-trained animals. The known prominent reduction in melatonin synthesis in aging animals led us to investigate the metabolic adaptations to physical training in aged animals with and without daily melatonin replacement. Male Wistar rats were assigned to four groups: sedentary control (SC), trained control (TC), sedentary treated with melatonin (SM), and trained treated with melatonin (TM). Melatonin supplementation lasted 16 wk, and the animals were subjected to exercise during the last 8 wk of the experiment. After euthanasia, samples of liver, muscle, and adipose tissues were collected for analysis. Trained animals treated with melatonin presented better results in the following parameters: glucose tolerance, physical capacity, citrate synthase activity, hepatic and muscular glycogen content, body weight, protein expression of phosphatidylinositol 3-kinase (PI3K), mitogen-activated protein kinase (MAPK), and protein kinase activated by adenosine monophosphate (AMPK) in the liver, as well as the protein expression of the glucose transporter type 4 (GLUT4) and AMPK in the muscle. In conclusion, these results demonstrate that melatonin supplementation in aging animals is of great importance for the required metabolic adaptations induced by aerobic exercise. Adequate levels of circulating melatonin are, therefore, necessary to improve energetic metabolism efficiency, reducing body weight and increasing insulin sensitivity.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos , Antioxidantes/farmacologia , Suplementos Nutricionais , Melatonina/farmacologia , Condicionamento Físico Animal , Tecido Adiposo/metabolismo , Envelhecimento/fisiologia , Animais , Fígado/metabolismo , Masculino , Músculo Esquelético/metabolismo , Ratos , Ratos Wistar
9.
J Pineal Res ; 55(2): 156-65, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23565768

RESUMO

In aged rats, insulin signaling pathway (ISP) is impaired in tissues that play a pivotal role in glucose homeostasis, such as liver, skeletal muscle, and adipose tissue. Moreover, the aging process is also associated with obesity and reduction in melatonin synthesis from the pineal gland and other organs. The aim of the present work was to evaluate, in male old obese Wistar rats, the effect of melatonin supplementation in the ISP, analyzing the total protein amount and the phosphorylated status (immunoprecipitation and immunoblotting) of the insulin cascade components in the rat hypothalamus, liver, skeletal muscle, and periepididymal adipose tissue. Melatonin was administered in the drinking water for 8- and 12 wk during the night period. Food and water intake and fasting blood glucose remained unchanged. The insulin sensitivity presented a 2.1-fold increase both after 8- and 12 wk of melatonin supplementation. Animals supplemented with melatonin for 12 wk also presented a reduction in body mass. The acute insulin-induced phosphorylation of the analyzed ISP proteins increased 1.3- and 2.3-fold after 8- and 12 wk of melatonin supplementation. The total protein content of the insulin receptor (IR) and the IR substrates (IRS-1, 2) remained unchanged in all investigated tissues, except for the 2-fold increase in the total amount of IRS-1 in the periepididymal adipose tissue. Therefore, the known age-related melatonin synthesis reduction may also be involved in the development of insulin resistance and the adequate supplementation could be an important alternative for the prevention of insulin signaling impairment in aged organisms.


Assuntos
Envelhecimento/metabolismo , Antioxidantes/uso terapêutico , Resistência à Insulina , Melatonina/uso terapêutico , Obesidade/metabolismo , Animais , Antioxidantes/metabolismo , Suplementos Nutricionais , Avaliação Pré-Clínica de Medicamentos , Transtornos do Metabolismo de Glucose/prevenção & controle , Masculino , Melatonina/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar
10.
Chronobiol Int ; 28(1): 21-30, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21182401

RESUMO

Melatonin, the pineal gland hormone, provides entrainment of many circadian rhythms to the ambient light/dark cycle. Recently, cardiovascular studies have demonstrated melatonin interactions with many physiological processes and diseases, such as hypertension and cardiopathologies. Although membrane melatonin receptors (MT1, MT2) and the transcriptional factor RORα have been reported to be expressed in the heart, there is no evidence of the cell-type expressing receptors as well as the possible role of melatonin on the expression of the circadian clock of cardiomyocytes, which play an important role in cardiac metabolism and function. Therefore, the aim of this study was to evaluate the mRNA and protein expressions of MT1, MT2, and RORα and to determine whether melatonin directly influences expression of circadian clocks within cultured rat cardiomyocytes. Adult rat cardiomyocyte cultures were created, and the cells were stimulated with 1 nM melatonin or vehicle. Gene expressions were assayed by real-time polymerase chain reaction (PCR). The mRNA and protein expressions of membrane melatonin receptors and RORα were established within adult rat cardiomyocytes. Two hours of melatonin stimulation did not alter the expression pattern of the analyzed genes. However, given at the proper time, melatonin kept Rev-erbα expression chronically high, specifically 12 h after melatonin treatment, avoiding the rhythmic decline of Rev-erbα mRNA. The blockage of MT1 and MT2 by luzindole did not alter the observed melatonin-induced expression of Rev-erbα mRNA, suggesting the nonparticipation of MT1 and MT2 on the melatonin effect within cardiomyocytes. It is possible to speculate that melatonin, in adult rat cardiomyocytes, may play an important role in the light signal transduction to peripheral organs, such as the heart, modulating its intrinsic rhythmicity.


Assuntos
Relógios Circadianos/genética , Miócitos Cardíacos/metabolismo , Receptores de Melatonina/genética , Receptores de Melatonina/metabolismo , Animais , Células Cultivadas , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Expressão Gênica/efeitos dos fármacos , Hipertensão/genética , Masculino , Melatonina/genética , Melatonina/metabolismo , Melatonina/farmacologia , Fotoperíodo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA