Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Org Synth ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38231062

RESUMO

Oxazolines are important heterocyclic systems due to their biological activities, such as antibacterial, antimalarial, anticancer, antiviral, anti-inflammatory, antifungal, antipyretic, and antileishmanial. They have been widely applied as chiral auxiliaries, polymers, catalysts, protecting groups, building blocks, and ligands in asymmetric synthesis. Due to their importance, many synthetic routes to prepare oxazoline moieties have been investigated and developed by researchers around the world. In this review, we summarized several synthetic methodologies published in the literature. The main substrates are nitriles, carboxylic acids, and acid derivatives, which react with a variety of reactants under conventional heating, microwave irradiation or ultrasound irradiation conditions. Syntheses via intramolecular cyclisation from amides have also been reported. Many publications have highlighted procedures based on solvent-free conditions using eco-friendly, reusable, and easy-availability catalysts.

2.
Curr Org Synth ; 20(7): 707-715, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36627780

RESUMO

BACKGROUND: A series of new eight 2-(1-aryl-3-methyl-1H-pyrazol-4-yl)-1,4,5,6-tetrahydropyrimidines 1(a-h) were synthesized by microwave irradiation technique. In vitro phenotypic screening was performed to evaluate the effect of these compounds on intracellular amastigotes forms of Trypanosoma cruzi, the etiological agent of Chagas disease. METHODS: Compounds 1(a-h) were synthesized from pyrazole-carbonitriles 2(a-h) employing microwave irradiation (50W) for 10-20 minutes. Physicochemical properties were calculated using OSIRIS DataWarrior. The toxic effect on mammalian cells (Vero Cells) and the trypanocidal activity against Trypanosoma cruzi (Dm28c-Luc) were also evaluated. RESULTS: Compounds 1(a-h) were obtained in 24-94% yields. They were completely characterized by Fourier Transform Infrared (FT-IR), Nuclear Magnetic Resonance (NMR) and High-Resolution Mass Spectrometry (HRMS) analyses. The derivatives showed low trypanocidal activity, with IC50 ranging from 47.16 to > 100 µM, with lower activity than benznidazole (1.93 µM) used as reference drug. CONCLUSION: The attractive features of this synthetic methodology are mild conditions, short reaction time, and low power. All derivatives showed low toxicity in mammalian cells, good oral bioavailability, and did not violate Lipinski´s rule of 5.


Assuntos
Tripanossomicidas , Trypanosoma cruzi , Animais , Chlorocebus aethiops , Relação Estrutura-Atividade , Células Vero , Micro-Ondas , Espectroscopia de Infravermelho com Transformada de Fourier , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Pirazóis/farmacologia , Mamíferos
3.
Molecules ; 26(21)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34771151

RESUMO

Chagas disease, a chronic and silent disease caused by Trypanosoma cruzi, is currently a global public health problem. The treatment of this neglected disease relies on benznidazole and nifurtimox, two nitroheterocyclic drugs that show limited efficacy and severe side effects. The failure of potential drug candidates in Chagas disease clinical trials highlighted the urgent need to identify new effective chemical entities and more predictive tools to improve translational success in the drug development pipeline. In this study, we designed a small library of pyrazole derivatives (44 analogs) based on a hit compound, previously identified as a T. cruzi cysteine protease inhibitor. The in vitro phenotypic screening revealed compounds 3g, 3j, and 3m as promising candidates, with IC50 values of 6.09 ± 0.52, 2.75 ± 0.62, and 3.58 ± 0.25 µM, respectively, against intracellular amastigotes. All pyrazole derivatives have good oral bioavailability prediction. The structure-activity relationship (SAR) analysis revealed increased potency of 1-aryl-1H-pyrazole-imidazoline derivatives with the Br, Cl, and methyl substituents in the para-position. The 3m compound stands out for its trypanocidal efficacy in 3D microtissue, which mimics tissue microarchitecture and physiology, and abolishment of parasite recrudescence in vitro. Our findings encourage the progression of the promising candidate for preclinical in vivo studies.


Assuntos
Técnicas de Cultura de Células , Doença de Chagas/tratamento farmacológico , Impressão Tridimensional , Pirazóis/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Humanos , Modelos Moleculares , Testes de Sensibilidade Parasitária , Pirazóis/química , Tripanossomicidas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA