Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Pharmaceutics ; 16(7)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39065577

RESUMO

The E6 and E7 oncoproteins of high-risk types of human papillomavirus (HR-HPV) are crucial for the development of cervical cancer (CC). Small interfering RNAs (siRNAs) are explored as novel therapies that silence these oncogenes, but their clinical use is hampered by inefficient delivery systems. Modification (pegylation) with polyethylene glycol (PEG) of liposomal siRNA complexes (siRNA lipoplexes) may improve systemic stability. We studied the effect of siRNA targeting HPV16 E6, delivered via cationic liposomes (lipoplexes), on cellular processes in a cervical carcinoma cell line (CaSki) and its potential therapeutic use. Lipoplexes-PEG-HPV16 E6, composed of DOTAP, Chol, DOPE, and DSPE-PEG2000 were prepared. The results showed that pegylation (5% DSPE-PEG2000) provided stable siRNA protection, with a particle size of 86.42 ± 3.19 nm and a complexation efficiency of over 80%; the siRNA remained stable for 30 days. These lipoplexes significantly reduced HPV16 E6 protein levels and restored p53 protein expression, inhibiting carcinogenic processes such as proliferation by 25.74%, migration (95.7%), and cell invasion (97.8%) at concentrations of 20 nM, 200 nM, and 80 nM, respectively. In conclusion, cationic lipoplexes-PEG-HPV16 E6 show promise as siRNA carriers for silencing HPV16 E6 in CC.

2.
Int J Pharm ; 661: 124439, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38972520

RESUMO

Liposomes functionalized with monoclonal antibodies offer targeted therapy for cancer, boasting advantages like sustained drug release, enhanced stability, passive accumulation in tumors, and interaction with overexpressed receptors on cancer cells. This study aimed to develop and characterize anti-EGFR immunoliposomes loaded with cabazitaxel and assess their properties against prostate cancer in vitro and in vivo. Using a Box-Behnken design, a formulation with soy phosphatidylcholine, 10% cholesterol, and a 1:20 drug-lipid ratio yielded nanometric particle size, low polydispersity and high drug encapsulation. Immunoliposomes were conjugated with cetuximab through DSPE-PEG-Maleimide lipid anchor. Characterization confirmed intact antibody structure and interaction with EGFR receptor following conjugation. Cabazitaxel was dispersed within the liposomes in the amorphous state, confirmed by solid-state analyses. In vitro release studies showed slower cabazitaxel release from immunoliposomes. Immunoliposomes had enhanced cabazitaxel cytotoxicity in EGFR-overexpressing DU145 cells without affecting non-tumor L929 cells. Cetuximab played an important role to improve cellular uptake in a time-dependent fashion in EGFR-overexpressing prostate cancer cells. In vivo, immunoliposomes led to significant tumor regression, improved survival, and reduced weight loss in xenograft mice. While cabazitaxel induced leukopenia, consistent with clinical findings, histological analysis revealed no evident toxicity. In conclusion, the immunoliposomes displayed suitable physicochemical properties for cabazitaxel delivery, exhibited cytotoxicity against EGFR-expressing prostate cancer cells, with high cell uptake, and induced significant tumor regression in vivo, with manageable systemic toxicity.


Assuntos
Cetuximab , Liberação Controlada de Fármacos , Receptores ErbB , Lipossomos , Neoplasias da Próstata , Taxoides , Ensaios Antitumorais Modelo de Xenoenxerto , Masculino , Animais , Receptores ErbB/imunologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Humanos , Linhagem Celular Tumoral , Taxoides/administração & dosagem , Taxoides/farmacocinética , Taxoides/farmacologia , Taxoides/química , Cetuximab/administração & dosagem , Camundongos , Camundongos Nus , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Antineoplásicos/química , Polietilenoglicóis/química , Polietilenoglicóis/administração & dosagem , Tamanho da Partícula , Sistemas de Liberação de Medicamentos
3.
J Pharm Sci ; 113(8): 2420-2432, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38705465

RESUMO

Chloraluminium phthalocyanine (ClAlPc) has potential therapeutic effect for the treatment of cancer; however, the molecule is lipophilic and may present self-aggregation which limits its clinical success. Thus, nanocarriers like liposomes can improve ClAlPc solubility, reduce off-site toxicity and increase circulation time. For this purpose, developing suitable liposomes requires the evaluation of different lipid compositions. Herein, we aimed to develop liposomes containing soy phosphatidylcholine (SPC), 1,2-distearoyl-sn-glycero- 3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPEPEG2000), cholesterol and oleic acid loaded with ClAlPc using the surface response methodology and the Box-Behnken design. Liposomes with particle size from 110.93 to 374.97 nm and PdI from 0.265 to 0.468 were obtained. The optimized formulation resulted in 69.09 % of ClAlPc encapsulated, with particle size and polydispersity index, respectively, at 153.20 nm and 0.309, providing stability and aggregation control. Atomic force microscopy revealed vesicles in a spherical or almost spherical shape, while the analyzes by Differential Scanning Calorimetry (DSC), Powder X-ray Diffraction (PXRD), and Fourier transform infrared spectroscopy (FTIR) suggested that the drug was adequately incorporated into the lipid bilayer of liposomes, in its amorphous state or molecularly dispersed. In vitro studies conducted in breast cancer cells (4T1) showed that liposome improved phototoxicity compared to the ClAlPc solution. ClAlPc-loaded liposomes also enhanced the production of ROS 3-fold compared to the ClAlPc solution. Finally, confocal microscopy and flow cytometry demonstrated the ability of the liposomes to enter cells and deliver the fluorescent ClAlPc photosensitizer with dose and time-dependent effects. Thus, this work showed that Box-Behnken factorial design was an effective strategy for optimizing formulation development. The obtained ClAlPc liposomes can be applied for photodynamic therapy in breast cancer cells.


Assuntos
Neoplasias da Mama , Indóis , Lipossomos , Compostos Organometálicos , Tamanho da Partícula , Fotoquimioterapia , Fármacos Fotossensibilizantes , Fotoquimioterapia/métodos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Indóis/química , Indóis/administração & dosagem , Feminino , Compostos Organometálicos/química , Compostos Organometálicos/administração & dosagem , Humanos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/farmacologia , Linhagem Celular Tumoral , Polietilenoglicóis/química , Fosfatidiletanolaminas/química , Fosfatidilcolinas/química , Colesterol/química , Ácido Oleico/química
4.
Cancers (Basel) ; 15(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37345140

RESUMO

Resveratrol (RSV), a phytoalexin from grapes and peanuts, has been reported to exhibit antiproliferative effects on various cancer cell lines. In breast cancer, RSV has been demonstrated to exert an antiproliferative effect on both hormone-dependent and hormone-independent breast cancer cell lines. However, RSV is a lipophilic drug, and its therapeutic effect could be improved through nanoencapsulation. Functionalizing polymeric nanoparticles based on polycaprolactone (PCL) with polyethylene glycol 1000 tocopheryl succinate (TPGS) has been reported to prolong drug circulation and reduce drug resistance. However, the effect of TPGS on the physicochemical properties and biological effects of breast cancer cells remains unclear. Therefore, this study aimed to develop RSV-loaded PCL nanoparticles using nanoprecipitation and investigate the effect of TPGS on the nanoparticles' physicochemical characteristics (particle size, zeta potential, encapsulation efficiency, morphology, and release rate) and biological effects on the 4T1 breast cancer cell line (cytotoxicity and cell uptake), in vitro and in vivo. The optimized nanoparticles without TPGS had a size of 138.1 ± 1.8 nm, a polydispersity index (PDI) of 0.182 ± 0.01, a zeta potential of -2.42 ± 0.56 mV, and an encapsulation efficiency of 98.2 ± 0.87%, while nanoparticles with TPGS had a size of 127.5 ± 3.11 nm, PDI of 0.186 ± 0.01, zeta potential of -2.91 ± 0.90 mV, and an encapsulation efficiency of 98.40 ± 0.004%. Scanning electron microscopy revealed spherical nanoparticles with low aggregation tendency. Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FTIR) identified the constituents of the nanoparticles and the presence of drug encapsulation in an amorphous state. In vitro release studies showed that both formulations followed the same dissolution profiles, with no statistical differences. In cytotoxicity tests, IC50 values of 0.12 µM, 0.73 µM, and 4.06 µM were found for the formulation without TPGS, with TPGS, and pure drug, respectively, indicating the potentiation of the cytotoxic effect of resveratrol when encapsulated. Flow cytometry and confocal microscopy tests indicated excellent cellular uptake dependent on the concentration of nanoparticles, with a significant difference between the two formulations, suggesting that TPGS may pose a problem in the endocytosis of nanoparticles. The in vivo study evaluating the antitumor activity of the nanoparticles confirmed the data obtained in the in vitro tests, demonstrating that the nanoparticle without TPGS significantly reduced tumor volume, tumor mass, maintained body weight, and improved survival in mice. Moreover, the biochemical evaluation evidenced possible hepatotoxicity for formulation with TPGS.

5.
Pharmaceutics ; 15(5)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37242613

RESUMO

Photodynamic therapy (PDT) using methylene blue (MB) as a photosensitizer has emerged as an alternative treatment for skin cancers, such as squamous cell carcinoma (SCC). To increase the cutaneous penetration of the drug, some strategies are used, such as the association of nanocarriers and physical methods. Thus, herein we address the development of nanoparticles based on poly-Ɛ-caprolactone (PCL), optimized with the Box-Behnken factorial design, for topical application of MB associated with sonophoresis. The MB-nanoparticles were developed using the double emulsification-solvent evaporation technique and the optimized formulation resulted in an average size of 156.93 ± 8.27 nm, a polydispersion index of 0.11 ± 0.05, encapsulation efficiency of 94.22 ± 2.19% and zeta potential of -10.08 ± 1.12 mV. Morphological evaluation by scanning electron microscopy showed spherical nanoparticles. In vitro release studies show an initial burst compatible with the first-order mathematical model. The nanoparticle showed satisfactory generation of reactive oxygen species. The MTT assay was used to assess cytotoxicity and IC50; values of 79.84; 40.46; 22.37; 9.90 µM were obtained, respectively, for the MB-solution and the MB-nanoparticle without and with light irradiation after 2 h of incubation. Analysis using confocal microscopy showed high cellular uptake for the MB-nanoparticle. With regard to skin penetration, a higher concentration of MB was observed in the epidermis + dermis, corresponding to 9.81, 5.27 µg/cm2 in passive penetration and 24.31 and 23.81 µg/cm2 after sonophoresis, for solution-MB and nanoparticle-MB, respectively. To the best of our knowledge, this is the first report of MB encapsulation in PCL nanoparticles for application in skin cancer using PDT.

6.
Pharmaceutics ; 15(3)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36986777

RESUMO

Docetaxel (DTX) is a non-selective antineoplastic agent with low solubility and a series of side effects. The technology of pH-sensitive and anti-epidermal growth factor receptor (anti-EGFR) immunoliposomes aims to increase the selective delivery of the drug in the acidic tumor environment to cells with EFGR overexpression. Thus, the study aimed to develop pH-sensitive liposomes based on DOPE (dioleoylphosphatidylethanolamine) and CHEMS (cholesteryl hemisuccinate), using a Box-Behnken factorial design. Furthermore, we aimed to conjugate the monoclonal antibody cetuximab onto liposomal surface, as well as to thoroughly characterize the nanosystems and evaluate them on prostate cancer cells. The liposomes prepared by hydration of the lipid film and optimized by the Box-Behnken factorial design showed a particle size of 107.2 ± 2.9 nm, a PDI of 0.213 ± 0.005, zeta potential of -21.9 ± 1.8 mV and an encapsulation efficiency of 88.65 ± 20.3%. Together, FTIR, DSC and DRX characterization demonstrated that the drug was properly encapsulated, with reduced drug crystallinity. Drug release was higher in acidic pH. The liposome conjugation with the anti-EGFR antibody cetuximab preserved the physicochemical characteristics and was successful. The liposome containing DTX reached an IC50 at a concentration of 65.74 nM in the PC3 cell line and 28.28 nM in the DU145 cell line. Immunoliposome, in turn, for PC3 cells reached an IC50 of 152.1 nM, and for the DU145 cell line, 12.60 nM, a considerable enhancement of cytotoxicity for the EGFR-positive cell line. Finally, the immunoliposome internalization was faster and greater than that of liposome in the DU145 cell line, with a higher EGFR overexpression. Thus, based on these results, it was possible to obtain a formulation with adequate characteristics of nanometric size, a high encapsulation of DTX and liposomes and particularly immunoliposomes containing DTX, which caused, as expected, a reduction in the viability of prostate cells, with high cellular internalization in EGFR overexpressing cells.

7.
J Microencapsul ; 40(1): 37-52, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36630267

RESUMO

We aimed to encapsulate R-PE to improve its stability for use as a fluorescent probe for cancer cells. Purified R-PE from the algae Solieria filiformis was encapsulated in polymeric nanoparticles using PCL. Nanoparticles were characterised and R-PE release was evaluated. Also, cellular uptake using breast and prostate cancer cells were performed. Nanoparticles presented nanometric particle size (198.8 ± 0.06 nm) with low polydispersity (0.13 ± 0.022), negative zeta potential (-18.7 ± 1.10 mV), and 50.0 ± 7.3% encapsulation. FTIR revealed that R-PE is molecularly dispersed in PCL. DSC peak at 307 °C indicates the presence of R-PE in the nanoparticle. Also, in vitro, it was demonstrated low release for nanoparticles and degradation for the free R-PE. Finally, cellular uptake demonstrated the potential of R-PE/PCL nanoparticles for cancer cell detection. Nanoparticles loaded with R-PE can overcome instability and allow application as a fluorescent probe for cancer cells.


Assuntos
Corantes Fluorescentes , Nanopartículas , Masculino , Humanos , Polímeros , Tamanho da Partícula , Estabilidade Proteica , Poliésteres
8.
AAPS PharmSciTech ; 23(6): 212, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918472

RESUMO

Squamous cell carcinoma (SCC) represents 20% of cases of non-melanoma skin cancer, and the most common treatment is the removal of the tumor, which can leave large scars. 5-Fluorouracil (5FU) is a drug used in the treatment of SCC, but it is highly hydrophilic, resulting in poor skin penetration in topical treatment. Some strategies can be used to increase the cutaneous penetration of the drug, such as the combination of liposomes containing penetration enhancers, for instance, surfactants, associated with the use of microneedling. Thus, the present work addresses the development of liposomes with penetration enhancers, such as sorbtitan monolaurate, span 20, for topical application of 5-FU and associated or not with the use of microneedling for skin delivery. Liposomes were developed using the lipid film hydration, resulting in particle size, polydispersity index, zeta potential, and 5-FU encapsulation efficiency of 88.08 nm, 0.169, -12.3 mV, and 50.20%, respectively. The presence of span 20 in liposomes potentiated the in vitro release of 5-FU. MTT assay was employed for cytotoxicity evaluation and the IC50 values were 0.62, 30.52, and 24.65 µM for liposomes with and without span 20 and 5-FU solution, respectively after 72-h treatment. Flow cytometry and confocal microscopy analysis evidenced high cell uptake for the formulations. In skin penetration studies, a higher concentration of 5-FU was observed in the epidermis + dermis, corresponding to 1997.71, 1842.20, and 2585.49 ng/cm2 in the passive penetration and 3214.07, 2342.84, and 5018.05 ng/cm2 after pretreatment with microneedles, for solution, liposome without and with span 20, respectively. Therefore, herein, we developed a nanoformulation for 5-FU delivery, with suitable physicochemical characteristics, potent skin cancer cytotoxicity, and cellular uptake. Span 20-based liposomes increased the skin penetration of 5-FU in association of microneedling. Altogether, the results shown herein evidenced the potential of the liposome containing span 20 for topical delivery of 5-FU.


Assuntos
Fluoruracila , Neoplasias Cutâneas , Hexoses , Humanos , Lipossomos/metabolismo , Tamanho da Partícula , Pele/metabolismo , Absorção Cutânea , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo
9.
Curr Med Chem ; 28(13): 2485-2520, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32484100

RESUMO

Targeted therapy has been recently highlighted due to the reduction of side effects and improvement in overall efficacy and survival from different types of cancers. Considering the approval of many monoclonal antibodies in the last twenty years, cancer treatment can be accomplished by the combination of monoclonal antibodies and small molecule chemotherapeutics. Thus, strategies to combine both drugs in a single administration system are relevant in the clinic. In this context, two strategies are possible and will be further discussed in this review: antibody-drug conjugates (ADCs) and antibody-functionalized nanoparticles. First, it is important to better understand the possible molecular targets for cancer therapy, addressing different antigens that can selectively bind to antibodies. After selecting the best target, ADCs can be prepared by attaching a cytotoxic drug to an antibody able to target a cancer cell antigen. Briefly, an ADC will be formed by a monoclonal antibody (MAb), a cytotoxic molecule (cytotoxin) and a chemical linker. Usually, surface-exposed lysine or the thiol group of cysteine residues are used as anchor sites for linker-drug molecules. Another strategy that should be considered is antibody-functionalized nanoparticles. Basically, liposomes, polymeric and inorganic nanoparticles can be attached to specific antibodies for targeted therapy. Different conjugation strategies can be used, but nanoparticles coupling between maleimide and thiolated antibodies or activation with the addition of ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC)/ N-hydroxysuccinimide (NHS) (1:5) and further addition of the antibody are some of the most used strategies. Herein, molecular targets and conjugation strategies will be presented and discussed to better understand the in vitro and in vivo applications presented. Also, the clinical development of ADCs and antibody-conjugated nanoparticles are addressed in the clinical development section. Finally, due to the innovation related to the targeted therapy, it is convenient to analyze the impact on patenting and technology. Information related to the temporal evolution of the number of patents, distribution of patent holders and also the number of patents related to cancer types are presented and discussed. Thus, our aim is to provide an overview of the recent developments in immunoconjugates for cancer targeting and highlight the most important aspects for clinical relevance and innovation.


Assuntos
Antineoplásicos , Imunoconjugados , Nanopartículas , Neoplasias , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Humanos , Imunoconjugados/uso terapêutico , Neoplasias/tratamento farmacológico
10.
Int J Pharm ; 592: 120082, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33188892

RESUMO

The epidermal growth factor receptor (EGFR) belongs to the tyrosine kinase receptors family and is present in the epithelial cell membrane. Its endogenous activation occurs through the binding of different endogenous ligands, including the epidermal growth factor (EGF), leading to signaling cascades able to maintain normal cellular functions. Although involved in the development and maintenance of tissues in normal conditions, when EGFR is overexpressed, it stimulates the growth and progression of tumors, resulting in angiogenesis, invasion and metastasis, through some main cascades such as Ras/Raf/MAPK, PIK-3/AKT, PLC-PKC and STAT. Besides, considering the limitations of conventional chemotherapy that result in high toxicity and low tumor specificity, EGFR is currently considered an important target. As a result, several monoclonal antibodies are currently approved for use in cancer treatment, such as cetuximab (CTX), panitumumab, nimotuzumab, necitumumab and others are in clinical trials. Aiming to combine the chemotherapeutic agent toxicity and specific targeting to EGFR overexpressing tumor tissues, two main strategies will be discussed in this review: antibody-drug conjugates (ADCs) and antibody-nanoparticle conjugates (ANCs). Briefly, ADCs consist of antibodies covalently linked through a spacer to the cytotoxic drug. Upon administration, binding to EGFR and endocytosis, ADCs suffer chemical and enzymatic reactions leading to the release and accumulation of the drug. Instead, ANCs consist of nanotechnology-based formulations, such as lipid, polymeric and inorganic nanoparticles able to protect the drug against inactivation, allowing controlled release and also passive accumulation in tumor tissues by the enhanced permeability and retention effect (EPR). Furthermore, ANCs undergo active targeting through EGFR receptor-mediated endocytosis, leading to the formation of lysosomes and drug release into the cytosol. Herein, we will present and discuss some important aspects regarding EGFR structure, its role on internal signaling pathways and downregulation aspects. Then, considering that EGFR is a potential therapeutic target for cancer therapy, the monoclonal antibodies able to target this receptor will be presented and discussed. Finally, ADCs and ANCs state of the art will be reviewed and recent studies and clinical progresses will be highlighted. To the best of our knowledge, this is the first review paper to address specifically the EGFR target and its application on ADCs and ANCs.


Assuntos
Antineoplásicos , Imunoconjugados , Nanopartículas , Neoplasias , Preparações Farmacêuticas , Receptores ErbB , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA