Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Arch Insect Biochem Physiol ; 113(1): e21872, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35112391

RESUMO

This study evaluated the effects of acute exposure of Aedes aegypti third instar (L3 ) larvae to the saline extract of Opuntia ficus-indica cladodes on the biological cycle and fertility of the emerging adults. For this, larvae were treated for 24 h with the extract at » LC50 (lethal concentration to kill 50% of larvae), ½ LC50 or LC50 ; the development and reproduction of the emerged adults were evaluated after a recovery period of 9 days. The resistance of proteins in the extract to hydrolysis by L3 digestive enzymes and histomorphological alterations in the larval midgut were also investigated. The extract contained lectin, flavonoids, cinnamic derivatives, terpenes, steroids, and reducing sugars. It showed a LC50 of 3.71% for 48 h. The data indicated mean survival times similar in control and extract treatments. It was observed development delay in extract-treated groups, with a lower number of adults than in control. However, the females that emerged laid similar number of eggs in control and treatments. Histological evaluation revealed absence of bacterial and fungal microorganisms in the food content in midguts from larvae treated with cladode extract. Electrophoresis revealed that three polypeptides in the extract resisted to hydrolysis by L3 digestive proteases for 90 min. The lectin activity was not altered even after 24-h incubation with the enzymes. In conclusion, the extract from O. ficus-indica can delay the development of Ae. aegypti larvae, which may be linked to induction of an axenic environment at larval midgut and permanence of lectin activity even after proteolysis.


Assuntos
Aedes , Inseticidas , Opuntia , Feminino , Animais , Lectinas/química , Larva , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Inseticidas/farmacologia
2.
PLoS One ; 15(11): e0242163, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33180853

RESUMO

We describe the immature stages of Migonemyia migonei, which is the vector of Leishmania (Viannia) braziliensis, the etiological agent of cutaneous leishmaniasis in South America, and a putative vector of Leishmania infantum chagasi. Scanning Electron Microscopy (SEM) was used to refine the description of the structures of the egg, all instar larvae, and the pupa. The eggs have polygonal cells on the egg exochorion, and differences between larval and pupal chaetotaxy have been highlighted. Different sensillary subtypes-trichoidea, basiconica, coelonica and campanoformia-were observed in the larval stages. The results presented herein contribute to the taxonomy of Mg. migonei and may contribute to future studies on the phylogeny of this important vector species.


Assuntos
Dípteros/ultraestrutura , Insetos Vetores/ultraestrutura , Animais , Dípteros/crescimento & desenvolvimento , Dípteros/parasitologia , Feminino , Insetos Vetores/crescimento & desenvolvimento , Insetos Vetores/parasitologia , Larva/ultraestrutura , Leishmania infantum/patogenicidade , Masculino , Microscopia Eletrônica de Varredura , Óvulo/ultraestrutura , Pupa/ultraestrutura
3.
Parasit Vectors ; 13(1): 441, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32883363

RESUMO

BACKGROUND: Sand flies are vectors of Leishmania spp., the causative agents of leishmaniasis in vertebrates, including man. The sand fly saliva contains powerful pharmacologically active substances that prevent hemostasis and enhance Leishmania spp. infections. On the other hand, salivary proteins can protect vaccinated mice challenged with parasites. Therefore, sand fly salivary proteins are relevant for the epidemiology of leishmaniasis and can be a potential target for a vaccine against leishmaniasis. Despite this, studies on sand fly salivary glands (SGs) are limited. METHODS: The present study analyzes, in detail, the morphology, anatomy and ultrastructure of the SGs of sand fly vectors of the genera Lutzomyia and Phlebotomus. We used histology, transmission and scanning electron microscopy and lectin labeling associated with confocal laser microscopy. RESULTS: The SGs have conserved and distinct morphological aspects according to the distinct sand fly species. Each SG has a single rounded lobe constituting of c.100-120 secretory cells. The SG secretory cells, according to their ultrastructure and lectin binding, were classified into five different subpopulations, which may differ in secretory pathways. CONCLUSIONS: To the best of our knowledge, these morphological details of sand fly salivary glands are described for the first time. Further studies are necessary to better understand the role of these different cell types and better relate them with the production and secretion of the saliva substances, which has a fundamental role in the interaction of the sand fly vectors with Leishmania.


Assuntos
Psychodidae/ultraestrutura , Glândulas Salivares/ultraestrutura , Animais , Vetores de Doenças , Leishmaniose/transmissão , Microscopia Eletrônica , Mosquitos Vetores/anatomia & histologia , Mosquitos Vetores/parasitologia , Mosquitos Vetores/ultraestrutura , Phlebotomus/anatomia & histologia , Phlebotomus/parasitologia , Phlebotomus/ultraestrutura , Psychodidae/anatomia & histologia , Psychodidae/parasitologia , Glândulas Salivares/parasitologia
4.
J Med Entomol ; 57(6): 1722-1734, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32761144

RESUMO

The antennal sensilla and the antenna of females Nyssomyia intermedia, one of the main vectors of American cutaneous leishmaniasis, were studied by scanning electron microscopy. The main goal was to characterize the quantity, typology, and topography of the sensilla with particular attention to the olfactory types. The insects were captured in the city of Corte de Pedra, State of Bahia, Brazil, by CDC-type light traps and raised in a laboratory as a new colony. Fourteen well-differentiated sensilla were identified, among six cuticular types: trichoidea, campaniformia, squamiformia, basiconica, chaetica, and coeloconica. Of these, six sensilla were classified as olfactory sensilla due to their specific morphological features. Smaller noninnervated pilosities of microtrichiae type were also evidenced by covering all antennal segments. The antennal segments differ in shapes and sizes, and the amount and distribution of types and subtypes of sensilla. This study may foment future taxonomic and phylogenetic analysis for a better evolutionary understanding of the sand flies. Besides, it may assist the targeting of future electrophysiological studies by Single Sensillum Recording, and aim to develop alternative measures of monitoring and control of this vector.


Assuntos
Antenas de Artrópodes/ultraestrutura , Insetos Vetores/ultraestrutura , Psychodidae/ultraestrutura , Animais , Brasil , Feminino , Leishmaniose Cutânea , Microscopia Eletrônica de Varredura , Sensilas/ultraestrutura
5.
PLoS One ; 14(9): e0219523, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31479460

RESUMO

Whole mitogenome sequences (mtDNA) have been exploited for insect ecology studies, using them as molecular markers to reconstruct phylogenies, or to infer phylogeographic relationships and gene flow. Recent Anopheles phylogenomic studies have provided information regarding the time of deep lineage divergences within the genus. Here we report the complete 15,393 bp mtDNA sequences of Anopheles aquasalis, a Neotropical human malaria vector. When comparing its structure and base composition with other relevant and available anopheline mitogenomes, high similarity and conserved genomic features were observed. Furthermore, 22 mtDNA sequences comprising anopheline and Dipteran sibling species were analyzed to reconstruct phylogenies and estimate dates of divergence between taxa. Phylogenetic analysis using complete mtDNA sequences suggests that A. aquasalis diverged from the Anopheles albitarsis complex ~28 million years ago (MYA), and ~38 MYA from Anopheles darlingi. Bayesian analysis suggests that the most recent ancestor of Nyssorhynchus and Anopheles + Cellia was extant ~83 MYA, corroborating current estimates of ~79-100 MYA. Additional sampling and publication of African, Asian, and North American anopheline mitogenomes would improve the resolution of the Anopheles phylogeny and clarify early continental dispersal routes.


Assuntos
Anopheles/classificação , Anopheles/genética , Genoma Mitocondrial , Genômica , Filogenia , Filogeografia , Animais , Composição de Bases , Biologia Computacional/métodos , Evolução Molecular , Genômica/métodos , Humanos , Anotação de Sequência Molecular , Mosquitos Vetores/classificação , Mosquitos Vetores/genética , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
6.
J Med Entomol ; 56(6): 1636-1649, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31321415

RESUMO

The mosquito gut is divided into foregut, midgut, and hindgut. The midgut functions in storage and digestion of the bloodmeal. This study used light, scanning (SEM), and transmission (TEM) electron microscopy to analyze in detail the microanatomy and morphology of the midgut of nonblood-fed Anopheles aquasalis females. The midgut epithelium is a monolayer of columnar epithelial cells that is composed of two populations: microvillar epithelial cells and basal cells. The microvillar epithelial cells can be further subdivided into light and dark cells, based on their affinities to toluidine blue and their electron density. FITC-labeling of the anterior midgut and posterior midgut with lectins resulted in different fluorescence intensities, indicating differences in carbohydrate residues. SEM revealed a complex muscle network composed of circular and longitudinal fibers that surround the entire midgut. In summary, the use of a diverse set of morphological methods revealed the general microanatomy of the midgut and associated tissues of An. aquasalis, which is a major vector of Plasmodium spp. (Haemosporida: Plasmodiidae) in America.


Assuntos
Anopheles/anatomia & histologia , Mosquitos Vetores/anatomia & histologia , Animais , Anopheles/ultraestrutura , Sistema Digestório/anatomia & histologia , Sistema Digestório/ultraestrutura , Feminino , Malária/transmissão , Microscopia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Mosquitos Vetores/ultraestrutura
7.
J Med Entomol ; 56(2): 421-431, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30508123

RESUMO

The mosquito midgut is divided into two regions named anterior midgut (AMG) and posterior midgut (PMG). The midgut expands intensely after the blood ingestion to accommodate a large amount of ingested food. To efficiently support the bloodmeal-induced changes, the organization of the visceral muscle fibers has significant adjustments. This study describes the spatial organization of the Anopheles aquasalis (Culicidae, Anophelinae) midgut muscle network and morphological changes after bloodmeal ingestion and infection with Plasmodium vivax (Haemosporida, Plasmodiidae). The midgut muscle network is composed of two types of fibers: longitudinal and circular. The two types of muscle fibers are composed of thick and thin filaments, similar to myosin and actin, respectively. Invagination of sarcoplasm membrane forms the T-system tubules. Sarcoplasmic reticulum cisternae have been observed in association with these invaginations. At different times after the bloodmeal, the fibers in the AMG are not modified. A remarkable dilation characterizes the transitional area between the AMG and the PMG. In the PMG surface, after the completion of bloodmeal ingestion, the stretched muscle fibers became discontinued. At 72 h after bloodmeal digestion, it is possible to observe the presence of disorganized muscle fibers in the midgut regions. The Plasmodium oocyst development along the basal layer of the midgut does not have a significant role in the visceral musculature distribution. This study provides features of the visceral musculature at different blood feeding times of An. aquasalis and shows important changes in midgut topography including when the mosquitoes are infected with P. vivax.


Assuntos
Anopheles/ultraestrutura , Mosquitos Vetores/ultraestrutura , Animais , Anopheles/parasitologia , Anopheles/fisiologia , Feminino , Trato Gastrointestinal/fisiologia , Trato Gastrointestinal/ultraestrutura , Mosquitos Vetores/parasitologia , Mosquitos Vetores/fisiologia , Músculos/fisiologia , Músculos/ultraestrutura , Plasmodium vivax/fisiologia
8.
PLoS Negl Trop Dis ; 12(11): e0006909, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30418971

RESUMO

Vector-borne diseases account for more than 17% of all infectious diseases, causing more than one million deaths annually. Malaria remains one of the most important public health problems worldwide. These vectors are bloodsucking insects, which can transmit disease-producing microorganisms during a blood meal. The contact of culicids with human populations living in malaria-endemic areas suggests that the identification of Plasmodium genetic material in the blood present in the gut of these mosquitoes may be possible. The process of assessing the blood meal for the presence of pathogens is termed 'xenosurveillance'. In view of this, the present work investigated the relationship between the frequency with which Plasmodium DNA is found in culicids and the frequency with which individuals are found to be carrying malaria parasites. A cross-sectional study was performed in a peri-urban area of Manaus, in the Western Brazilian Amazon, by simultaneously collecting human blood samples and trapping culicids from households. A total of 875 individuals were included in the study and a total of 13,374mosquito specimens were captured. Malaria prevalence in the study area was 7.7%. The frequency of households with at least one culicid specimen carrying Plasmodium DNA was 6.4%. Plasmodium infection incidence was significantly related to whether any Plasmodium positive blood-fed culicid was found in the same household [IRR 3.49 (CI95% 1.38-8.84); p = 0.008] and for indoor-collected culicids [IRR 4.07 (CI95%1.25-13.24); p = 0.020]. Furthermore, the number of infected people in the house at the time of mosquito collection was related to whether there were any positive blood-fed culicid mosquitoes in that household for collection methods combined [IRR 4.48 (CI95%2.22-9.05); p<0.001] or only for indoor-collected culicids [IRR 4.88 (CI95%2.01-11.82); p<0.001]. Our results suggest that xenosurveillance can be used in endemic tropical regions in order to estimate the malaria burden and identify transmission foci in areas where Plasmodium vivax is predominant.


Assuntos
Anopheles/parasitologia , Malária Vivax/epidemiologia , Malária Vivax/transmissão , Mosquitos Vetores/parasitologia , Plasmodium vivax/fisiologia , Animais , Anopheles/genética , Anopheles/fisiologia , Sangue/parasitologia , Brasil/epidemiologia , Efeitos Psicossociais da Doença , Estudos Transversais , DNA de Protozoário/sangue , DNA de Protozoário/isolamento & purificação , Monitoramento Epidemiológico , Características da Família , Feminino , Trato Gastrointestinal/parasitologia , Humanos , Incidência , Malária Vivax/sangue , Malária Vivax/parasitologia , Mosquitos Vetores/genética , Mosquitos Vetores/fisiologia , Plasmodium vivax/genética , Plasmodium vivax/isolamento & purificação , Plasmodium vivax/patogenicidade , Prevalência
9.
PLoS Negl Trop Dis ; 12(9): e0006785, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30248099

RESUMO

Innate immunity is an ancient and conserved defense system that provides an early effective response against invaders. Many immune genes of Anopheles mosquitoes have been implicated in defense against a variety of pathogens, including plasmodia. Nevertheless, only recent work identified some immune genes of Anopheles aquasalis mosquitoes upon P. vivax infection. Among these was a GATA transcription factor gene, which is described here. This is an ortholog of GATA factor Serpent genes described in Drosophila melanogaster and Anopheles gambiae. Gene expression analyses showed an increase of GATA-Serpent mRNA in P. vivax-infected A. aquasalis and functional RNAi experiments identified this transcription factor as an important immune gene of A. aquasalis against both bacteria and P. vivax. Besides, we were able to identify an effect of GATA-Serpent knockdown on A. aquasalis hemocyte proliferation and differentiation. These findings expand our understanding of the poorly studied A. aquasalis-P. vivax interactions and uncover GATA-Serpent as a key player of the mosquito innate immune response.


Assuntos
Anopheles/imunologia , Bactérias/imunologia , Fatores de Transcrição GATA/metabolismo , Imunidade Inata , Plasmodium/imunologia , Animais , Anopheles/genética , Diferenciação Celular , Proliferação de Células , Feminino , Fatores de Transcrição GATA/genética , Perfilação da Expressão Gênica , Inativação Gênica , Hemócitos/imunologia , Hemócitos/fisiologia
10.
PLoS Negl Trop Dis ; 12(2): e0006221, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29444080

RESUMO

BACKGROUND: The mosquito resistance to the insecticides threatens malaria control efforts, potentially becoming a major public health issue. Alternative methods like ivermectin (IVM) administration to humans has been suggested as a possible vector control to reduce Plasmodium transmission. Anopheles aquasalis and Anopheles darlingi are competent vectors for Plasmodium vivax, and they have been responsible for various malaria outbreaks in the coast of Brazil and the Amazon Region of South America. METHODS: To determine the IVM susceptibility against P. vivax in An. aquasalis and An. darlingi, ivermectin were mixed in P. vivax infected blood: (1) Powdered IVM at four concentrations (0, 5, 10, 20 or 40 ng/mL). (2) Plasma (0 hours, 4 hours, 1 day, 5, 10 and 14 days) was collected from healthy volunteers after to administer a single oral dose of IVM (200 µg/kg) (3) Mosquitoes infected with P. vivax and after 4 days was provided with IVM plasma collected 4 hours post-treatment (4) P. vivax-infected patients were treated with various combinations of IVM, chloroquine, and primaquine and plasma or whole blood was collected at 4 hours. Seven days after the infective blood meal, mosquitoes were dissected to evaluate oocyst presence. Additionally, the ex vivo effects of IVM against asexual blood-stage P. vivax was evaluated. RESULTS: IVM significantly reduced the prevalence of An. aquasalis that developed oocysts in 10 to 40 ng/mL pIVM concentrations and plasma 4 hours, 1 day and 5 days. In An. darlingi to 4 hours and 1 day. The An. aquasalis mortality was expressively increased in pIVM (40ng/mL) and plasma 4 hours, 1, 5 10 and 14 days post-intake drug and in An. darlingi only to 4 hours and 1 day. The double fed meal with mIVM by the mosquitoes has a considerable impact on the proportion of infected mosquitoes for 7 days post-feeding. The oocyst infection prevalence and intensity were notably reduced when mosquitoes ingested blood from P. vivax patients that ingested IVM+CQ, PQ+CQ and IVM+PQ+CQ. P. vivax asexual development was considerably inhibited by mIVM at four-fold dilutions. CONCLUSION: In conclusion, whole blood spiked with IVM reduced the infection rate of P. vivax in An. aquasalis and An. darlingi, and increased the mortality of mosquitoes. Plasma from healthy volunteers after IVM administration affect asexual P. vivax development. These findings support that ivermectin may be used to decrease P. vivax transmission.


Assuntos
Anopheles/efeitos dos fármacos , Insetos Vetores/efeitos dos fármacos , Ivermectina/farmacologia , Malária/transmissão , Plasmodium vivax/efeitos dos fármacos , Animais , Anopheles/parasitologia , Brasil , Cloroquina/farmacologia , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Feminino , Humanos , Insetos Vetores/parasitologia , Ivermectina/administração & dosagem , Ivermectina/sangue , Ivermectina/metabolismo , Malária/sangue , Oocistos/efeitos dos fármacos , Oocistos/patogenicidade , Primaquina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA