Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(23): 9933-9941, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38808660

RESUMO

In this contribution, a terpyridine-based ligand bearing a thioether functionality is used to prepare a new cobalt(II) spin crossover complex: [Co(TerpyPhSMe)2](PF6)2 (1), where TerpyPhSMe is 4'-(4-methylthiophenyl)-2,2':6',2''-terpyridine. Its structure, determined by single crystal X-ray diffraction, reveals a mer coordination of the tridentate terpyridine ligands, leading to a tetragonally compressed octahedron. Intermolecular interactions in the crystal lattice freeze the complex in the high spin state in the solid state at all temperatures, as indicated by magnetometry and Electron Paramagnetic Resonance (EPR) spectra. When dissolved in acetonitrile, however, temperature dependent electronic, 1H-NMR and EPR spectra highlight an entropy-driven spin crossover transition, whose thermodynamics parameters have been determined. This is the first report of a cobalt(II) SCO complex featuring a thioether group, allowing its implementation in chemically grown bistable monolayers and may open important perspectives for the use of such systems in molecular spintronics.

2.
J Inorg Biochem ; 256: 112573, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38678913

RESUMO

This paper describes the synthesis, structural analysis, as well as the magnetic and spectroscopic characterizations of three new dicopper(II) complexes with dinucleating phenol-based ligands containing different thioether donor substituents: aromatic (1), aliphatic (2) or thiophene (3). Temperature-dependent magnetometry reveals the presence of antiferromagnetic coupling for 1 and 3 (J = -2.27 cm-1 and -5.01 cm-1, respectively, H = -2JS1S2) and ferromagnetic coupling for 2 (J = 5.72 cm-1). Broken symmetry DFT calculations attribute this behavior to a major contribution from the dz2 orbitals for 1 and 3, and from the dx2-y2 orbitals for 2, along with the p orbitals of the oxygens. The bioinspired catalytic activities of these complexes related to catechol oxidase were studied using 3,5-di-tert-butylcatechol as substrate. The order of catalytic rates for the substrate oxidation follows the trend 1 > 2 > 3 with kcat of (90.79 ± 2.90) × 10-3 for 1, (64.21 ± 0.99) × 10-3 for 2 and (14.20 ± 0.32) × 10-3 s-1 for 3. The complexes also cleave DNA through an oxidative mechanism with minor-groove preference, as indicated by experimental and molecular docking assays. Antimicrobial potential of these highly active complexes has shown that 3 inhibits both Staphylococcus aureus bacterium and Epidermophyton floccosum fungus. Notably, the complexes were found to be nontoxic to normal cells but exhibited cytotoxicity against epidermoid carcinoma cells, surpassing the activity of the metallodrug cisplatin. This research shows the multifaceted properties of these complexes, making them promising candidates for various applications in catalysis, nucleic acids research, and antimicrobial activities.


Assuntos
Antineoplásicos , Complexos de Coordenação , Oxirredução , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ligantes , Sulfetos/química , Sulfetos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Platina/química , Platina/farmacologia , Linhagem Celular Tumoral
3.
Inorg Chem ; 61(31): 12118-12128, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35876616

RESUMO

Using the 1-(m-tolyl)-1H-1,2,3-triazole-4-(4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) (TlTrzNIT) radical and metal ß-diketonate complexes [M(hfac)2(H2O)2], where hfac is hexafluoroacetylacetonato, three new 2p-3d heterospin complexes were synthesized. Their structures were solved using single crystal X-ray diffraction data, and magnetic investigation was performed by DC and AC measurements and multifrequency EPR spectroscopy. Compounds 1 and 2 are isostructural complexes with molecular formula [M3(TlTrzNIT)2(hfac)6] (MII = Mn or Cu) while compound 3 is the mononuclear [Co(TlTrzNIT)(hfac)2] complex. In all complexes, the radical acts as a bidentate ligand through the oxygen atom of the nitroxide moiety and the nitrogen atom from the triazole group. Furthermore, in compounds 1 and 2, the TlTrzNIT is bridge-coordinated between two metal centers, leading to the formation of trinuclear complexes. The fitting of the static magnetic behavior reveals antiferromagnetic and ferromagnetic intramolecular interactions for complexes 1 and 2, respectively. The EPR spectra of 1 are well described by an isolated ferrimagnetic S = 13/2 (= 5/2 - 1/2 + 5/2 - 1/2 + 5/2) ground state with a biaxial zero-field splitting (ZFS) interaction characterized, respectively, by 2nd order axial and rhombic parameters, D and E, such that E/D is close to the maximum of 0.33. Meanwhile, EPR spectra for 2 are explained in terms of a ferromagnetic model with weakly anisotropic Cu-radical exchange interactions, giving rise to an isolated S = 5/2 (= 5 × 1/2) ground state with both an anisotropic g tensor and a weak ZFS interaction. Complex 2 represents one of only a few examples of Cu-radical moieties with measurable exchange anisotropy.

4.
Inorg Chem ; 60(2): 892-907, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33393287

RESUMO

Seven-coordinate, pentagonal-bipyramidal (PBP) complexes [Ln(bbpen)Cl] and [Ln(bbppn)Cl], in which Ln = Tb3+ (products I and II), Eu3+ (III and IV), and Gd3+ (V and VI), with bbpen2- = N,N'-bis(2-oxidobenzyl)-N,N'-bis(pyridin-2-ylmethyl)ethylenediamine and bbppn2- = N,N'-bis(2-oxidobenzyl)-N,N'-bis(pyridin-2-ylmethyl)-1,2-propanediamine, were synthesized and characterized by single-crystal X-ray diffraction analysis, alternating-current magnetic susceptibility measurements, and photoluminescence (steady-state and time-resolved) spectroscopy. Under a static magnetic field of 0.1 T, the Tb3+ complexes I and II revealed single-ion-magnet behavior. Also, upon excitation at 320 nm at 300 K, I and II presented very high absolute emission quantum yields (0.90 ± 0.09 and 0.92 ± 0.09, respectively), while the corresponding Eu3+ complexes III and IV showed no photoluminescence. Detailed theoretical calculations on the intramolecular energy-transfer rates for the Tb3+ products indicated that both singlet and triplet ligand excited states contribute efficiently to the overall emission performance. The expressive quantum yields, QLnL, measured for I and II in the solid state and a dichloromethane solution depend on the excitation wavelength, being higher at 320 nm. Such a dependence was rationalized by computing the intersystem crossing rates (WISC) and singlet fluorescence lifetimes (τS) related to the population dynamics of the S1 and T1 levels. Thin films of product II showed high air stability and photostability upon continuous UV illumination, which allowed their use as downshifting layers in a green light-emitting device (LED). The prototypes presented a luminous efficacy comparable with those found in commercial LED coatings, without requiring encapsulation or dispersion of II in host matrixes. The results indicate that the PBP environment determined by the ethylenediamine (en)-based ligands investigated in this work favors the outstanding optical properties in Tb3+ complexes. This work presents a comprehensive structural, chemical, and spectroscopic characterization of two Tb3+ complexes of mixed-donor, en-based ligands, focusing on their outstanding optical properties. They constitute good molecular examples in which both triplet and singlet excited states provide energy to the Tb3+ ion and lead to high values of QLnL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA