Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Biol Macromol ; 273(Pt 2): 133199, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38885866

RESUMO

This study aimed to produce, characterize and purify a protease from Aspergillus heteromorphus URM0269. After production by solid fermentation of wheat bran performed according to a central composite design, protease was characterized in terms of biochemical, kinetic, and thermodynamic parameters for further purification by chromatography. Proteolytic activity achieved a maximum value of 57.43 U/mL using 7.8 g of wheat bran with 40 % moisture. Protease displayed high stability in the pH and temperature ranges of 5.0-10.0 and 20-30 °C, respectively, and acted optimally at pH 7.0 and 50 °C. The enzyme, characterized as a serine protease, followed Michaelis-Menten kinetics with a maximum reaction rate of 140.0 U/mL and Michaelis constant of 11.6 mg/mL. Thermodynamic activation parameters, namely activation Gibbs free energy (69.79 kJ/mol), enthalpy (5.86 kJ/mol), and entropy (-214.39 J/mol.K) of the hydrolysis reaction, corroborated with kinetic modeling showing high affinity for azocasein. However, thermodynamic parameters suggested a reversible mechanism of unfolding. Purification by chromatography yielded a protease purification factor of 7.2, and SDS-PAGE revealed one protein band with a molecular mass of 14.7 kDa. Circular dichroism demonstrated a secondary structure made up of 45.6 % α-helices. These results show the great potential of this protease for future use in the industrial area.


Assuntos
Aspergillus , Temperatura , Termodinâmica , Aspergillus/enzimologia , Cinética , Concentração de Íons de Hidrogênio , Estabilidade Enzimática , Fermentação , Peptídeo Hidrolases/química , Peptídeo Hidrolases/isolamento & purificação , Peptídeo Hidrolases/metabolismo , Hidrólise , Agricultura
2.
Cytokine ; 179: 156621, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38648682

RESUMO

Chagas disease (CD) is caused by the hemoflagellate protozoan Trypanosoma cruzi. The control of the infection depends of the innate and acquired immune response of host. Moreover, CD plays a significant role in the immune response, and, in this context, microalgae can be an interesting alternative due to its immunomodulatory and trypanocidal effects. This study aimed to evaluate, in vitro, immunomodulatory potentials of the aqueous extracts of Chlorella vulgaris and Tetradesmus obliquus. Both microalgae extracts (ME) were obtained by sonication, and the selectivity index (SI) was determined by assays of inhibitory concentration (IC50) in T. cruzi trypomastigotes cells; as well as the cytotoxic concentrations (CC50) in human peripheral mononuclear cells (PBMC). The immune response was evaluated in T. cruzi-infected PBMC using the IC50 value. ME led to inhibition of T. cruzi trypomastigotes after 24 h of treatment, in which the IC50 values were 112.1 µg/ml to C. vulgaris and 15.8 µg ml-1 to T. obliquus. On the other hand, C. vulgaris did not affect the viability of PBMCs in concentrations up to 1000 µg ml-1, while T. obliquus was non-toxic to PBMCs in concentrations up to 253.44 µg ml-1. In addition, T. obliquus displayed a higher SI against T. cruzi (SI = 16.8), when compared with C. vulgaris (SI = 8.9). C. vulgaris decreased the levels of IFN, indicating a reduction of the inflammatory process; while T. obliquus displayed an interesting immunomodulatory effect, since discretely increased the levels of TNF and stimulated the production of the anti-inflammatory cytokine IL-10. This study confirms that ME are effective against T. cruzi trypomastigotes, and may able to control the parasitemia and preventing the progress of CD while regulating the inflammatory process.


Assuntos
Doença de Chagas , Leucócitos Mononucleares , Microalgas , Trypanosoma cruzi , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/imunologia , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Doença de Chagas/imunologia , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Microalgas/química , Extratos Vegetais/farmacologia , Citocinas/metabolismo
3.
Prep Biochem Biotechnol ; 54(2): 260-271, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37355277

RESUMO

Collagenases are proteases able to degrade native and denatured collagen, with broad applications such as leather, food, and pharmaceutical industries. The aim of this research was to purify and characterize a collagenase from Streptomyces antibioticus. In the present work, the coffee ground substrate provided conditions to obtaining high collagenase activity (377.5 U/mL) using anion-exchange DEAE-Sephadex G50 chromatographic protocol. SDS-PAGE revealed the metallo-collagenase with a single band of 41.28 kDa and was able to hydrolyzed type I and type V collagen producing bioactive peptides that delayed the coagulation time. The enzyme activity showed stability across a range of pH (6.0-11) and temperature (30-55 °C) with optima at pH 7.0 and 60 °C, respectively. Activators include Mg+2, Ca+2, Na+, K+, while full inhibition was given by other tested metalloproteinase inhibitors. Kinetic parameters (Km of 27.14 mg/mol, Vmax of 714.29 mg/mol/min, Kcat of 79.9 s-1 and Kcat/Km of 2.95 mL/mg/s) and thermodynamic parameters (Ea of 65.224 kJ/mol, ΔH of 62.75 kJ/mol, ΔS of 1.96 J/mol, ΔG of 62.16 kJ/mol, ΔGE-S of 8.18 kJ/mol and ΔGE-T of -2.64 kJ/mol) were also defined. Coffee grounds showed to be an interesting source to obtaining a collagenase able to produce bioactive peptides with anticoagulant activity.


Assuntos
Streptomyces antibioticus , Café , Termodinâmica , Colagenases , Peptídeos , Concentração de Íons de Hidrogênio , Cinética
4.
Prep Biochem Biotechnol ; : 1-13, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37814816

RESUMO

Collagenolytic proteases produced by Aspergillus heteromorphus URM0269 were extracted using a PEG/sulfate aqueous two-phase system (ATPS). A 23 factorial design was performed to analyze the independent variables: PEG molar mass (MPEG), PEG concentration (CPEG), and sulfate concentration (Csulf). The extracted proteases were also evaluated for their optimum pH and stability at different pH levels (4.0 - 11.0) after 20 h of incubation. Collagen was extracted from mutton snapper (Lutjanus analis) skin using acetic acid (0.5 mol L-1). The enzyme was preferentially partitioned to the PEG-rich phase (K > 1), whose highest purification factor and recovery (PF = 6.256 and Y = 404.432%) were obtained under specific conditions: MPEG 8000 g.mol-1, CPEG 30%, Csulf 10%. The ATPS extraction provided an enzymatic activity range of pH 7.0 - 11.0, exhibiting greater stability compared to the crude extract. Approximately 80% of protease activity was maintained after 20 hours of incubation at all analyzed pH levels, except pH 11.0. Collagen extraction from L. analis skin yielded 8.056%, and both crude extract samples and ATPS-derived samples successfully hydrolyzed the extracted collagen, reaching peak hydrolysis after 36 hours of treatment. These findings demonstrate the feasibility of extracting highly purified and active proteases capable of hydrolyzing L. analis collagen.

5.
Nat Prod Res ; : 1-7, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36661179

RESUMO

Due to the limitations of Chagas disease therapy, microalgae can be promising in the search of new trypanocidal compounds, since these organisms produce bioactive compounds with large pharmaceutical applications, including antiparasitic effects. In this work, trypanocidal activity of aqueous extract of Tetradesmus obliquus and, for the first time, aqueous extract of Chlorella vulgaris, were evaluated against trypomastigote forms of Trypanosoma cruzi. In addition, cytotoxic activity in Vero cells was evaluated. Our results showed that C. vulgaris and T. obliquus present trypanocidal activity (IC50 = 32.9 µg ml-1 and 36.4 µg ml-1, respectively), however, C. vulgaris did not present cytotoxic effects in Vero cells (CC50 > 600 µg ml-1) and displayed a higher selectivity against trypomastigotes forms of T. cruzi (SI > 18). Thus, microalgae extracts, such as aqueous extract of C. vulgaris, are promising potential candidates for the development of natural antichagasic drugs.

6.
Prep Biochem Biotechnol ; 53(8): 906-913, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36579491

RESUMO

Fructooligosaccharides (FOS) are prebiotics of interest to the food industry. These compounds can be produced through the transfructosylation reaction by the enzyme fructofuranosidase. This enzyme is widely produced by fungi in a medium rich in sugar. Therefore, in this work, the main objectives were production, purification, biochemical characterization of a novel fructofuranosidase enzyme by Penicillium citreonigrum URM 4459 and synthesize and evaluate the antibacterial potential of fructooligosaccharides. With respect to sucrose hydrolysis, the optimal pH was 5.5, the apparent Km for purified FFase was 3.8 mM, the molecular mass was 43.0 kDa, estimated by gel filtration on Superdex increase G75 controlled by AKTA Avant 25 and confirmed by 10% SDS-PAGE under denaturing condition. Also, the isoelectric point was 4.9. The fractions obtained with enzymatic activities, both stable at acidic pH and high temperatures, as well as being able to produce FOS. Regarding antibacterial activity, the FOS produced in this study showed better results than commercial FOS and other carbon sources. Thus, this work presents relevant data for the use of P. citreonigum to produce fructofuranosidase and consequently FOS and can be used in the food and pharmaceutical industry.


Assuntos
Penicillium , beta-Frutofuranosidase , Oligossacarídeos , Concentração de Íons de Hidrogênio
7.
Foods ; 12(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38231707

RESUMO

The search for improvements in quality of life has increasingly involved changes in the diet, especially the consumption of foods which, in addition to having good nutritional value, are characterized by offering health benefits. Among the molecules that trigger several beneficial responses are peptides, which are specific fragments of proteins known to produce positive effects on the human body. This review aimed to discuss the bioactive potential of peptides from cheeses. Studies show that the protein composition of some cheese varieties exhibits a potential for the release of bioactive peptides. The production of these peptides can be promoted by some technological procedures that affect the milk structure and constituents. The cheese maturation process stands out for producing bioactive peptides due to the action of enzymes produced by lactic acid bacteria. Thus, in addition to being proteins with high biological value due to their excellent amino acid profile, peptides from some types of cheeses are endowed with functional properties such as anti-hypertensive, antimicrobial, antioxidant, anticarcinogenic, opioid, and zinc-binding activities.

8.
Arch Microbiol ; 204(8): 503, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35852634

RESUMO

Thrombosis is a hematological disorder characterized by the formation of intravascular thrombi, which contributes to the development of cardiovascular diseases. Fibrinolytic enzymes are proteases that promote the hydrolysis of fibrin, promoting the dissolution of thrombi, contributing to the maintenance of adequate blood flow. The characterization of new effective, safe and low-cost fibrinolytic agents is an important strategy for the prevention and treatment of thrombosis. However, the development of new fibrinolytics requires the use of complex methodologies for purification, physicochemical characterization and evaluation of the action potential and toxicity of these enzymes. In this context, microbial enzymes produced by bacteria of the Bacillus genus are promising and widely researched sources to produce new fibrinolytics, with high thrombolytic potential and reduced toxicity. Thus, this review aims to provide a current and comprehensive understanding of the different Bacillus species used for the production of fibrinolytic proteases, highlighting the purification techniques, biochemical characteristics, enzymatic activity and toxicological evaluations used.


Assuntos
Bacillus , Trombose , Bactérias , Endopeptidases , Fibrinolíticos/química , Fibrinolíticos/farmacologia , Humanos , Peptídeo Hidrolases , Trombose/tratamento farmacológico
9.
Acta sci., Biol. sci ; 44: e62512, mar. 2022. graf, tab
Artigo em Inglês | VETINDEX | ID: biblio-1413423

RESUMO

Microalgae are known for producing various biotechnological products. Moreover, they absorb nutrients from dairy wastewater, grow well, and accumulate valuable compounds faster. In this study, photoautotrophic and mixotrophic cultivation with different initial lactose concentrations present in cheese whey (CW) were established to investigate their effect on cell concentration (Xm, mg L-1), cell productivity (Px, mg L-1day-1), and specific cell growth (µmax, day-1) of Chlorella vulgaris, Dunaliella tertiolecta,and Tetradesmus obliquus. The biomass production of C. vulgaris(Xm= 1,520 ± 30.3 mg L-1, Px = 147 ± 3.00 mg L-1, and µmax= 0.150 ± 0.00 mg L-1) in mixotrophic culture with 10.0 g L-1 of lactose, the main constituent of CW, was notably enhanced by 55% in comparison with their photoautotrophic cultures, whereas a lower effect of these lactose concentrations on cell growth was observed in T. obliquus and D. tertiolecta. Thus, mixotrophic cultivation of C. vulgarisusing CW as a carbon and energy source could be considered a feasible alternative to obtain high value-added biomass.(AU)


Assuntos
Queijo/análise , Queijo/microbiologia , Microalgas , Biotecnologia , Lactose/análise
10.
Prep Biochem Biotechnol ; 52(9): 1069-1077, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35130473

RESUMO

Trichosporon yeasts are widely employed to produce lipids, lipases, and aspartic peptidases, but there are no previous studies on collagenase production. This work aimed to select the best collagenase producing Amazonian Trichosporon strains. Moreover, a 23-full factorial design (FFD) and a 22-central composite design combined with Response Surface Methodology were applied to optimize production and find the best conditions for hydrolysis of type I bovine collagen. Most of the studied strains had some collagenolytic activity, but the selected one achieved the highest value (44.02 U) and a biomass concentration of 2.31 g/L. The best collagenase production conditions were 160 rpm of agitation, pH 5.5 and a substrate concentration of 4.0 g/L. The former experimental design showed that substrate concentration was the only statistically significant factor on both biomass concentration and collagenase activity, while the latter showed simultaneous effects of substrate concentration and pH on collagenolytic activity, which peaked at pH 5.5-6.4 and substrate concentration of 3.0-3.4 g/L. An additional 2³-FFD was finally used to optimize the conditions collagen hydrolysis, and pH 6, 25 °C and a substrate concentration of 7.5 (g/L) ensured the highest hydrolysis degree. This study is the first that describes optimized conditions of collagenase production by Trichosporon strains.


Assuntos
Trichosporon , Animais , Abelhas , Bovinos , Colágeno , Colagenases , Lipídeos , Pólen
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA