Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Braz J Microbiol ; 55(2): 1251-1263, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492163

RESUMO

Natural pigments have received special attention from the market and industry as they could overcome the harm to health and the environmental issues caused by synthetic pigments. These pigments are commonly extracted from a wide range of organisms, and when added to products they can alter/add new physical-chemical or biological properties to them. Fungi from extreme environments showed to be a promising source in the search for biomolecules with antimicrobial and antiparasitic potential. This study aimed to isolate fungi from Antarctic soils and screen them for pigment production with antimicrobial and antiparasitic potential, together with other previously isolated strains A total of 52 fungi were isolated from soils in front of the Collins Glacier (Southeast border). Also, 106 filamentous fungi previously isolated from the Collins Glacier (West border) were screened for extracellular pigment production. Five strains were able to produce extracellular pigments and were identified by ITS sequencing as Talaromyces cnidii, Pseudogymnoascus shaanxiensis and Pseudogymnoascus sp. All Pseudogymnoascus spp. (SC04.P3, SC3.P3, SC122.P3 and ACF093) extracts were able to inhibit S. aureus ATCC6538 and two (SC12.P3, SC32.P3) presented activity against Leishmania (L.) infantum, Leishmania amazonensis and Trypanossoma cruzii. Extracts compounds characterization by UPLC-ESI-QToF analysis confirmed the presence of molecules with biological activity such as: Asterric acid, Violaceol, Mollicellin, Psegynamide A, Diorcinol, Thailandolide A. In conclusion, this work showed the potential of Antartic fungal strains from Collins Glacier for bioactive molecules production with activity against Gram positive bacteria and parasitic protozoas.


Assuntos
Antiparasitários , Pigmentos Biológicos , Regiões Antárticas , Pigmentos Biológicos/farmacologia , Pigmentos Biológicos/biossíntese , Antiparasitários/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo , Fungos/efeitos dos fármacos , Fungos/metabolismo , Fungos/classificação , Microbiologia do Solo , Bactérias/efeitos dos fármacos , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bactérias/genética , Testes de Sensibilidade Microbiana , Animais , Staphylococcus aureus/efeitos dos fármacos
2.
Chem Biodivers ; 20(1): e202200715, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36490384

RESUMO

The hydroalcoholic extract of Polygala altomontana (30, 100, and 300 mg/kg, i.g.) showed a dose-dependent antinociceptive action during the inflammatory phase of the formalin test. In addition, the preparation (30 and 300 mg/kg, i.g.) showed anti-hyperalgesic action when tested on a mechanical nociception model. UPLC-ESI-QTOF-MS data indicated the active extract contained phenylpropanoid sucrose esters, glycosylated quercetin derivatives, styrylpyrones, and coumarins. Some identified compounds, including styrylpyrones and coumarins, have previously demonstrated antinociceptive action. The results also show that P. altomontana shows potential for developing pain-relieving herbal remedies and drugs.


Assuntos
Analgésicos , Polygala , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Polygala/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Dor/tratamento farmacológico , Cumarínicos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA