Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Mater Sci Mater Med ; 32(9): 109, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34453621

RESUMO

The aim of this study was to evaluate biocompatibility of hydroxyapatite (HAP) from fish waste using in vitro and in vivo assays. Fish samples (whitemouth croaker - Micropogonias furnieri) from the biowaste was used as HAP source. Pre-osteoblastic MC3T3-E1 cells were used in vitro study. In addition, bone defects were artificially created in rat calvaria and filled with HAP in vivo. The results demonstrated that HAP reduced cytotoxicity in pre-osteoblast cells after 3 and 6 days following HAP exposure. DNA concentration was lower in the HAP group after 6 days. Quantitative RT-PCR did not show any significant differences (p > 0.05) between groups. In vivo study revealed that bone defects filled with HAP pointed out moderate chronic inflammatory cells with slight proliferation of blood vessels after 7 and 15 days. Chronic inflammatory infiltrate was absent after 30 days of HAP exposure. There was also a decrease in the amount of biomaterial, being followed by newly formed bone tissue. All experimental groups also demonstrated strong RUNX-2 immoexpression in the granulation tissue as well as in cells in close contact with biomaterial. The number of osteoblasts inside the defect area was lower in the HAP group when compared to control group after 7 days post-implantation. Similarly, the osteoblast surface as well as the percentage of bone surface was higher in control group when compared with HAP group after 7 days post-implantation. Taken together, HAP from fish waste is a promising possibility that should be explored more carefully by tissue-engineering or biotechnology.


Assuntos
Durapatita/isolamento & purificação , Durapatita/farmacologia , Produtos Pesqueiros , Animais , Regeneração Óssea/efeitos dos fármacos , Substitutos Ósseos/química , Substitutos Ósseos/isolamento & purificação , Substitutos Ósseos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Produtos Pesqueiros/análise , Teste de Materiais , Camundongos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/fisiologia , Osteogênese/efeitos dos fármacos , Perciformes , Ratos , Crânio/efeitos dos fármacos , Crânio/fisiologia , Resíduos Sólidos/análise
2.
J Mater Sci Mater Med ; 30(9): 105, 2019 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-31494718

RESUMO

Bioactive glasses (BG) are known for their ability to bond to bone tissue. However, in critical situations, even the osteogenic properties of BG may be not enough to induce bone consolidation. Thus, the enrichment of BG with polymers such as Poly (D, L-lactic-co-glycolic) acid (PLGA) and associated to photobiomodulation (PBM) may be a promising strategy to promote bone tissue healing. The aim of the present study was to investigate the in vivo performance of PLGA supplemented BG, associated to PBM therapy, using an experimental model of cranial bone defect in rats. Rats were distributed in 4 different groups (Bioglass, Bioglass/PBM, Bioglas/PLGA and BG/PLGA/PBM). After the surgical procedure to induce cranial bone defects, the pre-set samples were implanted and PBM treatment (low-level laser therapy) started (808 nm, 100 mW, 30 J/cm2). After 2 and 6 weeks, animals were euthanized, and the samples were retrieved for the histopathological, histomorphometric, picrosirius red staining and immunohistochemistry analysis. At 2 weeks post-surgery, it was observed granulation tissue and areas of newly formed bone in all experimental groups. At 6 weeks post-surgery, BG/PLGA (with or without PBM) more mature tissue around the biomaterial particles. Furthermore, there was a higher deposition of collagen for BG/PLGA in comparison with BG/PLGA/PBM, at second time-point. Histomorphometric analysis demonstrated higher values of BM.V/TV for BG compared to BG/PLGA (2 weeks post-surgery) and N.Ob/T.Ar for BG/PLGA compared to BG and BG/PBM (6 weeks post-surgery). This current study concluded that the use of BG/PLGA composites, associated or not to PBM, is a promising strategy for bone tissue engineering.


Assuntos
Substitutos Ósseos/uso terapêutico , Cerâmica/uso terapêutico , Fraturas Ósseas/terapia , Luz , Ácido Poliglicólico/uso terapêutico , Crânio/lesões , Cicatrização/efeitos dos fármacos , Animais , Substitutos Ósseos/química , Substitutos Ósseos/efeitos da radiação , Transplante Ósseo/métodos , Cimentação/métodos , Cerâmica/química , Terapia Combinada , Masculino , Teste de Materiais , Osteogênese/efeitos dos fármacos , Osteogênese/efeitos da radiação , Fototerapia/métodos , Ácido Poliglicólico/química , Ratos , Ratos Wistar , Crânio/efeitos dos fármacos , Crânio/efeitos da radiação , Engenharia Tecidual
3.
Laser Ther ; 28(3): 171-179, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32009730

RESUMO

BACKGROUND: Photobiomodulation presents stimulatory effects on tissue metabolism, constituting a promising strategy to produce bone tissue healing. OBJECTIVE: the aim of the present study was to investigate the in vivo performance of PBM using an experimental model of cranial bone defect in rats. MATERIAL AND METHODS: rats were distributed in 2 different groups (control group and PBM group). After the surgical procedure to induce cranial bone defects, PBM treatment initiated using a 808 nm laser (100 mW, 30 J/cm2, 3 times/week). After 2 and 6 weeks, animals were euthanized and the samples were retrieved for the histopathological, histomorphometric, picrosirius red staining and immunohistochemistry analysis. RESULTS: Histology analysis demonstrated that for PBM most of the bone defect was filled with newly formed bone (with a more mature aspect when compared to CG). Histomorphomeric analysis also demonstrated a higher amount of newly formed bone deposition in the irradiated animals, 2 weeks post-surgery. Furthermore, there was a more intense deposition of collagen for PBM, with ticker fibers. Results from Runx-2 immunohistochemistry demonstrated that a higher immunostaining for CG 2 week's post-surgery and no other difference was observed for Rank-L immunostaining. CONCLUSION: This current study concluded that the use of PBM was effective in stimulating newly formed bone and collagen fiber deposition in the sub-critical bone defect, being a promising strategy for bone tissue engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA