Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pain ; 164(5): 948-966, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36001074

RESUMO

ABSTRACT: The loss of GABAergic inhibition is a mechanism that underlies neuropathic pain. Therefore, rescuing the GABAergic inhibitory tone through the activation of GABA A receptors is a strategy to reduce neuropathic pain. This study was designed to elucidate the function of the spinal α 6 -containing GABA A receptor in physiological conditions and neuropathic pain in female and male rats. Results show that α 6 -containing GABA A receptor blockade or transient α 6 -containing GABA A receptor knockdown induces evoked hypersensitivity and spontaneous pain in naive female rats. The α 6 subunit is expressed in IB4 + and CGRP + primary afferent neurons in the rat spinal dorsal horn and dorsal root ganglia but not astrocytes. Nerve injury reduces α 6 subunit protein expression in the central terminals of the primary afferent neurons and dorsal root ganglia, whereas intrathecal administration of positive allosteric modulators of the α 6 -containing GABA A receptor reduces tactile allodynia and spontaneous nociceptive behaviors in female, but not male, neuropathic rats and mice. Overexpression of the spinal α 6 subunit reduces tactile allodynia and restores α 6 subunit expression in neuropathic rats. Positive allosteric modulators of the α 6 -containing GABA A receptor induces a greater antiallodynic effect in female rats and mice compared with male rats and mice. Finally, α 6 subunit is expressed in humans. This receptor is found in CGRP + and P2X3 + primary afferent fibers but not astrocytes in the human spinal dorsal horn. Our results suggest that the spinal α 6 -containing GABA A receptor has a sex-specific antinociceptive role in neuropathic pain, suggesting that this receptor may represent an interesting target to develop a novel treatment for neuropathic pain.


Assuntos
Neuralgia , Receptores de GABA-A , Masculino , Ratos , Feminino , Camundongos , Humanos , Animais , Receptores de GABA-A/metabolismo , Hiperalgesia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Corno Dorsal da Medula Espinal/metabolismo
2.
J Neurochem ; 156(6): 897-916, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32750173

RESUMO

Extrasynaptic α5 -subunit containing GABAA (α5 -GABAA ) receptors participate in chronic pain. Previously, we reported a sex difference in the action of α5 -GABAA receptors in dysfunctional pain. However, the underlying mechanisms remain unknown. The aim of this study was to examine this sexual dimorphism in neuropathic rodents and the mechanisms involved. Female and male Wistar rats or ICR mice were subjected to nerve injury followed by α5 -GABAA receptor inverse agonist intrathecal administration, L-655,708. The drug produced an antiallodynic effect in nerve-injured female rats and mice, and a lower effect in males. We hypothesized that changes in α5 -GABAA receptor, probably influenced by hormonal and epigenetic status, might underlie this sex difference. Thus, we performed qPCR and western blot. Nerve injury increased α5 -GABAA mRNA and protein in female dorsal root ganglia (DRG) and decreased them in DRG and spinal cord of males. To investigate the hormonal influence over α5 -GABAA receptor actions, we performed nerve injury to ovariectomized rats and reconstituted them with 17ß-estradiol (E2). Ovariectomy abrogated L-655,708 antiallodynic effect and E2 restored it. Ovariectomy decreased α5 -GABAA receptor and estrogen receptor α protein in DRG of neuropathic female rats, while E2 enhanced them. Since DNA methylation might contribute to α5 -GABAA receptor down-regulation in males, we examined CpG island DNA methylation of α5 -GABAA receptor coding gene through pyrosequencing. Nerve injury increased methylation in male, but not female rats. Pharmacological inhibition of DNA methyltransferases increased α5 -GABAA receptor and enabled L-655,708 antinociceptive effect in male rats. These results suggest that α5 -GABAA receptor is a suitable target to treat chronic pain in females.


Assuntos
Epigênese Genética/genética , Nociceptividade/fisiologia , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/fisiopatologia , Receptores de GABA-A/genética , Receptores de GABA-A/fisiologia , Animais , Metilação de DNA/genética , Estradiol/farmacologia , Feminino , Agonistas GABAérgicos/administração & dosagem , Agonistas GABAérgicos/farmacologia , Gânglios Espinais/metabolismo , Imidazóis/farmacologia , Injeções Espinhais , Masculino , Camundongos , Camundongos Endogâmicos ICR , Ovariectomia , Medição da Dor , Ratos , Ratos Wistar , Caracteres Sexuais
3.
Neurobiol Pain ; 8: 100049, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32548337

RESUMO

Though sex differences in chronic pain have been consistently described in the literature, their underlying neural mechanisms are poorly understood. Previous work in humans has demonstrated that men and women differentially invoke distinct brain regions and circuits in coping with subjective pain unpleasantness. The goal of the present work was to elucidate the molecular mechanisms in the basolateral nucleus of the amygdala (BLA) that modulate hyperalgesic priming, a pain plasticity model, in males and females. We used plantar incision as the first, priming stimulus and prostaglandin E2 (PGE2) as the second stimulus. We sought to assess whether hyperalgesic priming can be prevented or reversed by pharmacologically manipulating molecular targets in the BLA of male or female mice. We found that administering ZIP, a cell-permeable inhibitor of aPKC, into the BLA attenuated aspects of hyperalgesic priming induced by plantar incision in males and females. However, incision only upregulated PKCζ/PKMζ immunoreactivity in the BLA of male mice, and deficits in hyperalgesic priming were seen only when we restricted our analysis to male Prkcz-/- mice. On the other hand, intra-BLA microinjections of pep2m, a peptide that interferes with the trafficking and function of GluA2-containing AMPA receptors, a downstream target of aPKC, reduced mechanical hypersensitivity after plantar incision and disrupted the development of hyperalgesic priming in both male and female mice. In addition, pep2m treatment reduced facial grimacing and restored aberrant behavioral responses in the sucrose splash test in male and female primed mice. Immunofluorescence results demonstrated upregulation of GluA2 expression in the BLA of male and female primed mice, consistent with pep2m findings. We conclude that, in a model of incision-induced hyperalgesic priming, PKCζ/PKMζ in the BLA is critical for the development of hyperalgesic priming in males, while GluA2 in the BLA is crucial for the expression of both reflexive and affective pain-related behaviors in both male and female mice in this model. Our findings add to a growing body of evidence of sex differences in molecular pain mechanisms in the brain.

4.
Eur J Pain ; 14(2): 120.e1-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19443247

RESUMO

Most forms of visceral pain generate intense referred hyperalgesia but the mechanisms of this enhanced visceral hypersensitivity are not known. The on-cells of the rostral ventromedial medulla (RVM) play an important role in descending nociceptive facilitation and can be sensitized to somatic mechanical stimulation following peripheral nerve injury or hindpaw inflammation. Here we have tested the hypothesis that visceral noxious stimulation sensitizes RVM ON-like cells, thus promoting an enhanced descending facilitation that can lead to referred visceral hyperalgesia. Intracolonic capsaicin instillation (ICI) was applied to rats in order to create a hyperalgesic state dependent on noxious visceral stimulation. This instillation produced acute pain-related behaviors and prolonged referred hyperalgesia that were prevented by the RVM microinjection of AP5, an NMDA selective antagonist. In electrophysiological experiments, ON-like RVM neurons showed ongoing spontaneous activity following ICI that lasted for approximately 20 min and an enhanced responsiveness to von Frey and heat stimulation of the hindpaw and to colorectal distention (CRD) that lasted for at least 50 min post capsaicin administration. Moreover, ON-like cells acquired a novel response to CRD and responded to heat stimulation in the innocuous range. OFF-like neurons responded to capsaicin administration with a brief (<5 min) inhibition of activity followed by an enhanced inhibition to noxious stimulation and a novel inhibition to innocuous stimulation (CRD and heat) at early time points (10 min post capsaicin). These results support the hypothesis that noxious visceral stimulation may cause referred hypersensitivity by promoting long-lasting sensitization of RVM ON-like cells.


Assuntos
Capsaicina/farmacologia , Hiperalgesia/induzido quimicamente , Bulbo/fisiologia , Neurônios/fisiologia , Dor/induzido quimicamente , Abdome/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Colo , Eletrofisiologia , Hiperalgesia/patologia , Masculino , Bulbo/citologia , Bulbo/patologia , Microeletrodos , Microinjeções , Neurônios/patologia , Dor/patologia , Estimulação Física , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA